数学问题,必釆纳反义词是什么

1.甲乙两人从ab两站同时出发甲骑洎行车,乙骑摩托车沿同一条路线相向均速行驶,出发后3小时两人相遇已知再相遇时乙比甲行驶多了84千米,相遇后四分之五时乙到达a哋问:甲乙行... 1.甲乙两人从ab两站同时出发,甲骑自行车乙骑摩托车,沿同一条路线相向均速行驶出发后3小时两人相遇,已知再相遇时乙比甲行驶多了84千米相遇后四分之五时乙到达a地,问:甲乙行驶速度各位多少
2.在做解方程练习时,试卷中有一方程2y-1/2(二分之一)=1/2y+中嘚?是有理数解与当x=2时代数式5(x-1)-2(x-2)-4的值相同,求
3.老师带着ab两名学生到离学校33千米的博物馆参观,老师乘一辆摩托车速度为25千米/時,这辆摩托车后可乘坐一名学生带人后速度为20千米/时。学生步行速度为5千米/时请你设计一种方案,使师生三人同时出发后达到博物館的时间都不超过三小时

再相遇时乙比甲行驶多了84千米

易知甲乙第二次相遇用了6小时

即速度差v差=y-x (摩托车快一点?)

相遇后四分之五(小?)时乙到達a地(楼主打少一个字?)

因为已知再相遇时乙比甲行驶多了84千米,相遇后四分之五时乙到达a地

2y-1/2(二分之一)=1/2y+中的?是有理数解与当x=2时代数式5(x-1)-2(x-2)-4的值相同,求

老师带着ab两名学生到离学校33千米的博物馆参观,老师乘一辆摩托车速度为25千米/时,这辆摩托车后可乘坐一名學生带人后速度为20千米/时。学生步行速度为5千米/时请你设计一种方案,使师生三人同时出发后达到博物馆的时间都不超过三小时

情形┅:老师用摩托车先送走1人另1人在原地等候等摩托车返回接他

已知:去时车的速度=25㎞/h

返回时车的速度=20㎞/h

摩托车送第1个人到博物馆的时间為:33÷25=33/25(小时)

情形二:摩托车送走第1人,另1人边走边等摩托车

由情形一得:小车送第1个人到博物馆需要33/25小时

设此时另1人在C处小汽车往返BC之间的路程不能超过

还剩22千米,翻倍即摩托车行驶的路程

情形三:中途让第1人下次回去接另1人

AB长33千米,先让老师开摩托车把学生甲开箌E地

那么此时学生乙走到C地

有因为时间一定速度和路程成正比例关系,摩托载人的速度与走路的速度比=20:5=4:1

再让甲从E地步行老师回去接乙,在D点相遇那时甲走到F

最后甲步行到B地,老师和乙也到达B地同样可得: DB:FB=4:1

要想让同时到达,必须让甲和乙步行的时间和坐摩托車的时间相同

老师回来时速度与步行的速度比是5:1

综上所述:先带1人行驶1.2小时,再返回接另1人

此种方案所需时间正好为3小时

第一题没看慬。能直接写算是和***吗,第三题也是谢谢
 情形一:老师用摩托车先送走1人,另1人在原地等候等摩托车返回接他
摩托车送第1个人箌博物馆的时间为:33÷25=33/25(小时)
最后总共用时:33×2/25+33/20=4.29(小时)
∵4.29>3
∴此种方案不可取
情形二:摩托车送走第1人另1人边走边等摩托车
由情形一得:小车送第1个人到博物馆需要33/25小时
设此时另1人在C处,小汽车往返BC之间的路程不能超过
3-(33/25)=42/25(小时)
BC之间距离:33-(5×33/25)=132/5(千米)
1份的距离:(132/5)÷6=22/5(千米)
還剩22千米翻倍即摩托车行驶的路程
22÷25=22/25(小时)
22÷20=11/10(小时)
时间之和:(42/25)+22/25+11/10=3.66(小时)
故而此种方案不可取
情形三:中途让第1人下次,回去接另1人
先讓老师开摩托车把学生甲开到E地
那么此时学生乙走到C地
摩托载人的速度与走路的速度比=20:5=4:1
可得: AC:AE=1:4
再让甲从E地步行老师回去接乙,茬D点相遇那时甲走到F
最后甲步行到B地,老师和乙也到达B地同样可得: DB:FB=4:1
因为AC:AE=1:4,所以AC:CE=1:3
同理 DB:FB=4:1
所以DF:FB=3:1
需满足AD=EBAE=DB
老师回来时,DE:CD=5:1
所以CE是5+1=6份
那AC是6/3=2份
AD是2+1=3份
则EB也是3份
所以33千米的对应分率是2+1+5+3=11份
按比例分配,33/(2+1+5+3)=3千米
3×8=24千米
24/20+9/5=3小时
∴符合条件
这是讨论题```已经很简略了``

“茬过去两年没有实质性进展证明

没有本质的进步在过去的20年中,哥德巴赫猜想的证明”北京师范大学数学系教授在当前的国际数学家夶会45分钟报告的陈毪砝说,“这证明了就差最后一步研究的性质进步,这个猜想将最终得到解决”

据陈MUFA,2000年国际组织7千禧年数学领域的问题,解决悬赏百万美元但不包括哥德巴赫猜想。

“哥德巴赫猜想在过去的几年甚至十年也很难取证。”龚富洲研究员,中国科学院数学与系统科学研究院中国科学院院士,这样的分析猜想已成为一个孤立的问题与数学不太密切的联系。在相同的时间里研究人员还缺乏有效的思维方式最终解决这个著名的猜想。 “陈景润先生还活着现有的方法已经被用到了极致”

英国剑桥大学教授,获奖鍺的Fields奖贝克尔也表示陈景润在此任务中所取得的进展是迄今为止最好的检查结果,有没有更大的突破

“在解决这样的数学问题,可能昰一两百年免疫进度也可能是短期的有显着的进步。”龚富洲某些突发事件的数学研究,也许可以让人们进度提前获得猜想的证明

,核心解决的数学具有挑战性的问题的新思路“的要求中国科学院数学与系统科学研究院,成立了专门的国际研究小组的研究人员猜想確认研究所的负责人,研究员傅里说:“我们期待着在黎曼假设的突破和其他地区的这个研究小组没有哥德巴赫猜想的努力方向”

/>最菦数学家陈景润的从“皇冠上的明珠”于1996年离开了我们,他的成就一次“触电”哥德巴赫猜想“的激情唤起人们 2000年3月,在英国和美国的兩个出版公司的百万美元悬赏寻求最终解决哥德巴赫猜想的,所以再次成为人们关注的焦点两年过去了,没有人来领取奖品的钱直箌最后期限。

据估计大约有二??三十人有能力从事猜想确认。最终解决这个著名的猜想潘承洞,笔者指出:现在看不到前进的道路上所設想的人来说是可以解决的猜想我们必须作出重大改善,或提出了一种新的方法只会进一步的研究可能会猜测。王元判断与此基本相姒:“哥德巴赫猜想的进一步研究必须有一个新的想法。”作为当代著名数学家王元,潘承洞取得了显着的贡献猜想的证明

“数学研究不仅做的问题,我并不赞成片面炒作这些挑战在我看来,研究这些数学问题不到1%的世界的数学家。”陈模垡的感觉“数学研究不必去回答别人提出的问题,我们必须做更多的原创性研究专注于整体科研实力的提高。

民间数学家”的距离“珍珠”有多远国际數学家大会开幕前夕

一些“民间数学家”来到北京,声称要“证明”哥德巴赫猜想和社会各界的关注

事实上,在最近几年中我们的人保持猜想的最终证明结果“轮流参观了一些数学家,也不时传出农民成功地允许明哥德巴赫猜想”“拖拉机驾驶员摘要“皇冠上的明珠”的“重大新闻”。

“随着大会的临近数学研究所收到的稿件猜想的研究也越来越多。”富安立中国研究院研究员说,“20年来成千上萬的业余爱好者我收到了超过200个字母。他们的话题主要集中在哥德巴赫猜想猜想配方很简单,大多数人能听懂所以很多人想破解这個问题。 “

”民间爱科学的热情应该得到保护但我们不提倡个人攻击世界数学问题,他们可能是更合适的事情做这种热情。“福李说“从手稿中可以看出,很多缺乏基本的数学素养而不是阅读其他人的数学论文,结果是错误的 “

”这种现象在国外,如在柏林国际數学家大会在这次会议上的广告纸,声称证明(1 +1)的第一个国家最高科学技术奖获得者国际数学家大会,吴文俊现任董事长说:“┅些业余爱好者会一点点算法的基础上,去验证(1 +1)即所谓的证明论文,并给我一点点的数学事实上,像哥德巴赫猜想这样的问题应該被允许从事“专家”不应该成为一个“群众运动”。“

由于这个原因许多数学家的数学爱好者一个忠告: “如果你真的想在哥德巴赫猜想的证明做出成绩,最好先掌握数学知识以避免不必要的弯路。”

新闻背景:去除“皇冠上的明珠”更糟糕的最后一步

新华社北京8朤20日电(记者李斌张Jingyong邹声文)徐驰著名的报告文学使数以百万计的普通百姓知道“自然科学的皇后是数学,数学的皇冠数论哥德巴赫猜想,是宝石之冠“也被称为陈景润的世界,远离人的那颗明珠 - 不同的只是在最后一步但20年后的今天,这一步仍然是任何人都无法跨樾

哥德巴赫猜想的人猜测,长为260年在1742年,德国数学家哥德巴赫写信给伟大的数学家欧拉提出了不少于6两个素数(简称“1 +1”)。例如6 = 3 +3,24 = 11 13,依此类推欧拉回答说,我相信猜想是真的,但他无法证明

近170年后的今天,许多数学家艰苦要克服它,但没有取得突破直到1920姩,挪威数学家布朗终于走近它在数量上更进了一步古老的筛法理论证明:每一个大偶数是9个素因子贾格尔9个素因子的产品,即(9 +9)

從那时起,猜“围剿”萎缩在1924年,德国数学家弗拉基米尔·哈尔证明了(7 +7) 1932年,英国数学家爱斯斯尔曼证明(6 +6) 1938年,苏联数学家布赫斯塔勃证明(5 +5)(4 +4),两年后证明在1956年,苏联数学家维诺格拉多夫证明了(3 +3) 1958年,中国数学家王元证明了(2 +3) 1962年中国数学家潘承洞证明(1 +5),王元证明(1 +4)1965年,布赫斯塔勃证明(1 +3) “包围圈”越来越小,越来越接近最终目标(1 +1)

1966年,中国数学家陈景润成為世界珍珠的人 - 他证明了(1 +2)。他的成就处于世界领先地位在国际数学界称为“陈氏定理。由于卓越的哥德巴赫猜想的研究中陈景润,王元潘承洞,于1982年获得国家自然科学一等奖奖

由于陈景润证明(1 +2),哥德巴赫猜想 - 证明(1 +1)的最后一步也没有实质性进展,有关專家认为原来的方法到了极致,我们必须提出一个新的方法用全新的思维方式,只有进一步的研究可能会猜测(完)

徐驰是一个报告文学,中国人都知道陈景润与哥德巴赫猜想

那么,什么是哥德巴赫猜想

哥德巴赫猜想大致可以分为两个猜想: / a>

■1个,每个不小于6的甚至是两个奇素数之和;

■每个不小于9奇的三奇素数的总和

哥德巴赫,在德国一所中学的老师也是一位著名的数学家,生于1690年当选为俄罗斯圣彼得堡科学院于1725年。

[哥德巴赫猜想的简短历史]

> 1742年哥德巴赫在教学中发现,每个不小于6甚至是两个素数(只能被1和本身整除的數)。6 = 3 +3,12 = 5 +7 1742年6月7日写信给时间数学家哥德巴赫欧拉欧拉6月30日给他的回信说,他相信这个猜想是正确的但他不能证明。叙事这么简单连欧拉这样首屈一指的数学家也不能证明??这个猜想已经引起了许多数学家的注意。哥德巴赫猜想至今许多数学家都不断努力去克服它,但都沒有成功当然,有人提出一些具体的验证工作例如:6 = 3 + 3,8 = 3 + 510 = 5 + 5

从那时起,道著名的数学问题造成在世界上成千上万数学家的注意。 200多年過去了有没有人来证明这一点。哥德巴赫猜想由此成为数学皇冠明珠“镜花水月”在哥德巴赫猜想问题的积极性,后两个100余年而不衰在世界上许多数学家,殚精竭虑疼痛然而,仍然摸不着头脑

20世纪20年代,使人们开始接近1920年挪威数学家布朗用一种古老的筛选方法證明得出一个结论:每一个大偶数可表示为(99)。非常有用的缩小包围圈然后,科学家从(109),数量逐渐减少的首要因素中包含的每┅个数字直到最后日期,以便每个数字都是素数从而证明了哥德巴赫猜想。 />最好的结果是1966年中国数学家陈景润证明,陈水扁的定理:“任何充分大的偶数为一个素数是一个自然数而后者则是只有两个素数的乘积。 “通常被称作为结果是大偶数可表示为”1 + 2“的形式

■哥德巴赫猜想的进展证明

陈景润之前和偶数进步可以为s(2)表示素数的和T的素数,(以下简称为“S + T”)如下:

于1920年挪威的布朗证明了“9 + 9”。

1924年德国拉德马赫证明了“7 + 7”。

1932年英国王牌特曼证明“6 + 6”。

1937年意大利,麦蒂已经证明了“10 +”“+”,“+ 15”和“2 + 366

1938年,苏联的布赫夕太勃“5 + 5”

1940年,事实证明苏联的布赫夕太勃“4 + 4”

1948年,匈牙利的瑞尼证明了“1 + C”其中c是一个非常大的自然数。

1956年中国的王元证明叻“3 + 4”。

1957年中国的王元证明了“3 + 3”和“2 + 3”。

1962年潘承洞,中国和苏联的波罗的海浴证明了“1 + 5”中国的王元证明了“1 + 4”。

1965年布赫夕太葧,苏联与维诺格拉多夫,意大利证明彭比利“1 + 3”。

1966年中国的陈景润证明了“1 + 2”。

从1920年布朗证明“9 +9”1966年陈景润拍摄“1 +2”46年。陈定悝“诞生以来的40年人民的哥德巴赫猜想猜想的进一步研究,都无果而终筛法

■布朗布朗筛法的思路是:任何一个偶数(自然数2n个)可鉯写为2N,其中n是一个自然数可以表示为n个不同形式的自然数:2n = 1 +(2n-1个)第(2n-2)= 2 + = 3 +(2N-3的)= ... = N + N在筛去不适合哥德巴赫猜想的结论,所有这些自然数(例如1和2n-1,2i和(2N-2I)i = 1,2, ..; 3J和第(2n-3j的),J = 2,3...,等等)如果它们能证明至少也具有对自然数不是筛子,以例如,称为一对p1和p2p1和p2都是素數,即n = P1 + P2这样的哥德巴赫猜想的证明第一部分的语句是很自然的想法,关键是要证明“自然是至少有一对数字是不淘汰“世界上没有人未能证明这部分。为了能够证明这个猜想会解决

但是,由于大即使N(不小于6)等于相应数量的奇数列(第3,在n-3的尾部)无论是奇数編号的和一个由一个与总结。因此按照奇数和类型的素数+素数的(1 +1)或首要的数字+合数(1 2)(2 2)具有一个复合数+ 2 +1或合数+合数(注:1 2或2 +1属於素数+型)素参与成无限数量时代“的各种相关的联系,与所有类别的组合即会出现1 +1或1 +1并不涵盖所有类目组合“模式,可以形成的即咜的存在是交变的,因此可以排除存在1 2 2 2 1 2 2方式,1 1证明了相反 1 +1不持有***,但事实是:1 2 2 2 1 2(或至少一个)陈定理(任何足够大的偶数可以表礻为两个素数或一个素数具有两个公开的一个素数的产品),根据现有的基础上的一些规则(如1 +2的存在而没有1 +1)1 + 2类别结合2 2 1 2(或至少??一個)确定的,客观的即不能被排除。1 +1成立是不可能的这种彻底的论证布朗筛法不允许的“1 +1”。

增长甚至价值观的变化之间的素数无序素数分布的,有没有简单的正比关系甚至是值的增加素数的值忽高忽低是低的。素数的变化即使通过数学关系吗?我不能!即使是素数的值之间的关系的价值遵循的规则在过去的两个世纪中,人的努力来证明这一点最后选择放弃,找到另一种方式来所以还有人猜测其他方式允许明哥德巴赫他们的努力数学在某些领域取得了进展,与哥德巴赫猜想的证明没有影响

哥德巴赫猜想本质上是一个素数嘚关系,表达的即使是他们的素数之间的关系的数学表达式,是不存在的它可以从实践中得到证实,但逻辑上不能得到解决的矛盾和甚至个人偶数等于一般个人如何做?个人和一般的质量同样的,反对永远存在矛盾。哥德巴赫猜想永远无法证明的数学结论的理论邏辑

“来形容当代的语言,哥德巴赫猜想有两个因素第一部分叫做奇数的猜想,第二部分叫做甚至猜测奇怪的猜想,任何大于或等於7个奇素数甚至连猜是大于或等于4,必须是两个素数“(引自”哥德巴赫猜想潘承洞)

哥德巴赫猜想的困难我做不想说什么,我说为什么现代数学的哥德巴赫猜想的兴趣不大为什么很多所谓的民间数学家哥德巴赫猜想的研究兴趣。

事实上在1900年,世界数学家大会上偉大的数学家希尔伯特做了一个报告,23个具有挑战性的问题哥德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪苼素数猜想现代数学通常被认为是最有价值的是广义黎曼假设,如果黎曼假设是成立的有很多问题的***,哥德巴赫猜想和孪生素数猜想相对独立的如果简单的解决方案这两个问题,其他问题的意义也不是很大数学家往往更有价值,找到了一些新的理论或新的工具“办法”解决哥德巴赫猜想。

例如:一个重要的问题:素数的公式如果这个问题解决了,关于素数的问题应该说是没有问题的。

为什么民间数学家们如此醉心于哥伦比亚的猜测不关心它更有意义的黎曼假设?

一个重要的原因是黎曼假设要读明白是什么意思非常困難的,没有学过数学的人哥德巴赫猜想可以读的学生。

的数学普遍认为这两个问题的难度可比。

民间数学家解决哥德巴赫猜想大多是茬初等数学来解决问题一般认为,初等数学解决不了哥德巴赫猜想至少可以这样说,即使每天有一头牛在初等数学的框架下解决哥德巴赫猜想,有什么意义呢解决了,所以我害怕的意义的练习做数学课。

伯努利兄弟的挑战提出数学界最速降线问题。牛顿的解决方案具有非凡的微积分技巧的速降约翰·伯努利光学方法巧妙地解决了最速降线方程,雅各伯努利麻烦的方法,解决这个问题的方程。雅各方法是最复杂的但他的方式来开发一个通用的方法来解决所有这些问题 - 变分法。现在雅各的方法是最有意义和有价值的。

同样当希爾伯特声称能解决费马最后定理,但是他们并没有公布自己的方法。有人问他为什么他回答说:“这是一个金蛋,鸡为什么要我杀叻它?”事实上在解决费尔马大定理的过程中,有很多有用的数学工具得到了进一步的发展如椭圆曲线,模形式

现代数学界在努力研究新的工具,新的方法期待着哥德巴赫猜想“下金蛋的鸡生下更多的理论。

错误的例子哥德巴赫猜想的证明

“哥德巴赫猜想”公式“謌猜”证明“哥德巴赫猜想”的证明:假设偶数为M的素数删除√M≈N偶奇素数删除因子的因素:3,5,7,11...,N1,偶数(1 +1)最低素数公式正解:√M / 4吔就是N / 4。如果删除因子L整除奇素数即使是素数的最小的质数*(L-1)/(L-2),例如即使是能够被3整除的素数,偶数的素数≥(3-1)/(3-2 )* N / 4 = N / 2并且洳果一个偶数5星,素数≥(5-1)/(5-2)可以是素数整除* N / 4 = N / 3如果一个偶数被3整除的,并且可以是两个素数的素数整除5则即使是素数≥2N / 3。其他奇素数的偶数可以删除因素整除照猫画虎∵偶数是大于6以下超过14个“哥德巴赫猜想”(1 +1)的解决方案。根据公式“兄弟的猜测”积极的解決方案大于16的偶数(1 +1)的素数≥1∴“哥德巴赫猜想”成立

猜想哥德巴赫猜想:任何> = 6,甚至可以代表两个素数之和

我想:任何的奇素数茬必要的数量为1,35,79(1, 9其中至少有两个数字,如11,19)

(这可以被认为是多数字素数)

但可能无法填补所有的偶数因此这种方法是錯误的`条件不足!


· 醉心答题,欢迎关注

下载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的***。


· 超过15用户采纳过TA的回答

下载百喥知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知道的***。

数学小学1上用括线和问号表示的實际问题_641B种子下载地址:


参考资料

 

随机推荐