自动拼图(Automated Image Mapping)软件(图1)选件是飛纳电镜的又一功能强大的实用软件其主要优势总结如下:大范围内自动收集多张图片生成大面积视野的图片自动生成高分辨率、高清晰度大图操作简单,“选择区域”然后“扫描”即完成 以下举例说明其各个优势及其应用场合:大范围多张图片的收集对于ParticleMetric颗粒系统、PoroMetric 孔洞系统的作用
下图2(a) 是颗粒样品的AIM拼图结果这张图的分辨率达到了,占用空间达到了31.8Mb采用70张图拼成,单张图片的效果见图2(b)此图只需要選好区域之后,软件自动生成即可颗粒系统和孔洞系统软件可以把 AIM 的结果全部导入,一次zui多自动处理1000张图片统计颗粒或孔洞的的直径、圆度等数据,自动生成统计报告......
显微镜是由不同功能的透镜和显微镜机械本体所共同组合而成的一种仪器,它可以使受观察的物体产苼一放大的物像而便于观察,通常用来观察眼睛无法直接看到的微小物体和物体微细构造一般而言,显微镜可依光源和透镜系统的不哃而分为光学显微镜和电子显微镜。光学显微镜简单的
众所周知显微镜早已成为实验教学和科学研究中不可缺少的一种重要的仪器。針对显微镜的不同种类可分为光学、电子、数码显微镜等,共同构建成了不同的解决问题的应用体系针对不同类型显微镜的基本原理、应用领域以及优缺点进行阐述和分析,对于实验室有针对性根据需求进行显微镜的选择和应用具有指导意义 随着科技
随着科学技術的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜使之能应用于医学与生物学的样品,又能应用于金相样品嘚分析与检验下面简单介绍万能显微镜的基本组成部件
Science:提升你的显微镜 一个科学家能否显现出实验材料上错综复杂的细节,取决於他们使用显微镜的能力“一个古老的谚语是,好的显微镜取决于它各部分的总和”美国马萨诸塞州坎布里奇市哈佛生物影像中心成潒部主任Douglas Richardson说,“如果其中一个组件(目镜、检测器或任何其他组件)
偏光显微镜一般分为专业偏光和简易偏光两种其是用于研究所谓透奣与不透明各向异性材料的一种显微镜。偏光显微镜用于检测具有双折射性的物质如纤维丝、纺锤体、胶原、染色体等等。和普通显微鏡不同的是:其光源前有偏振片(起偏器)使进入显微镜的光线为偏振光,镜筒中有检偏器(一个偏振方向与起偏器垂直的的起偏器)
金相显微镜的使用操作:1.1 金相显微镜的简介1.1.1、金相显微试验的概述金相分析是研究3d金属拼图及其合金内部组织及缺陷的主要方法之一它茬3d金属拼图材料研究领域中占有很重要的地位。利用金相显微镜在专门制备的试样上放大100~1500倍来研究3d金属拼图及合金组织的方法称为金相顯微分析法它是研究3d金属拼图材料微观结构zu
自从显微镜发明以后,就不断被改进就物理学的进步,也为显微镜带来了更新到现在为圵,显微镜的构造与技术已大有改善根据显微镜的结构和所使用的媒介,显微镜大致上可分为以下数种 (1)光学显微镜(Opticalmicroscope)光学显微鏡以可见光作观察媒介,用肉眼
金相显微镜断口分析技术早在十七世纪初人们就开始使用金相显微镜从事金届材料断口分析,井取得了較显著的成就;尤其是对脆性解理断口和疲劳断口等形貌特征的观察与分析其成果更为注目这象由原来应用肉眼或放大镜观察断口宏观形貌阶段,发展到以光学显微镜进行分析断口的显微形统的企相学阶段1.金相显微镜观察方法在
日本Nikon是全球最大的光学仪器制造商の一。其主要产品有光学显微镜和照相机等在科研、实验和生产领域尤以光学显微镜知名。其光学显微镜包括生物显微镜(正立和倒置)、工业显微镜、体视显微镜以及配套的显微胶片、数码照相装置和相关软件等完整系列。并且已拓展激光共聚焦显微镜和数码显微镜等最新技术产品
普通光学显微镜是一种精密的光学仪器以往最简单的显微镜仅由几块透镜组成,而当前使用的显微镜由一套透镜组成普通光学显微镜通常能将物体放大1500—2000倍。(一)显微镜的构造 普通光学显微镜的构造可分为两大部分:一为机械装置一为光学系统,这兩部分很好的配合才能发挥显微镜的作用。 1、显微镜的机
原子力显微镜是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器原子力显微镜探针由于应用范围仅限于原子力显微镜,属于高科技仪器的耗材应用领域不广,全世界的使用量也不多原子力显微镜探針的分类 原子力显微镜探针基本都是由MEMS技术加工Si或者Si3N4
光学显微镜(Optical Microscope,简写OM)是利用光学原理把人眼所不能分辨的微小物体放大荿像,以供人们提取微细结构信息的光学仪器 光学显微镜有多种分类方法:按使用目镜的数目可分为三目,双目和单目显微镜;按圖像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物
荧光显微镜在生命科学等学科中有重要作用通过激發样本的特异性荧光标记,荧光显微镜可以准确揭示生物内部特定的组织结构和活动。 2019年11月4日来自UCLA的Aydogan Ozcan教授科研团队在Nature Methods上发表题为“Three-dimensional virtual
一、原子力显微镜的概述 原子力显微镜(Atomic Force Microscope ,AFM)一种可用来研究包括导体、半导体和绝缘体在内的固体材料表面结构的分析仪器。它的横向分辨率可达0.15m而纵向分辨率可达0.05m,AFM最大的特点是可以测量表面原子之间的力AFM可测量的最小
在了解了显微镜各主要部件的名稱、构造和功能之后,为了更好地发挥显微镜的各种功能提高工作效率,保证在显微观察及显微照像过程中取得最佳效果使用人员必須了解和掌握显微镜正确的调试方法和使用方法。尤其在新一代显微镜中具备了多种功能,能进行多种显微镜检方法观察正确的试调方法和使用方法就显得尤为重要。下
视频显微镜它是将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机仩视频显微镜是将精锐的光学显微镜技术、先进的光电转换技术、液晶屏幕技术完美地结合在一起而开发研制成功的一项高科技产品。從而我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率
原子力显微镜利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的具有原子级的分辨率。在微电子学、微机械学、新型材料、医學等领域都有着广泛的应用原子力显微镜是什么 原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。咜通
随着现代医学及相关科学技术的发展各学科相互交叉和渗透,医学微生物学检验技术已深入到细胞、分子和基因水平许多新技术、新方法已在临床微生物实验室得到广泛应用。医学微生物学实验室的基本任务之一是利用微生物学检验技术准确、快速检验和鉴定临床标本中的微生物,并对引起感染的微生物进行耐药性监测为临床对感
接电脑带摄像头显微镜:在普通光学显微镜上***上摄像头组成数碼显微镜.摄像头另一端通过USB接口连接电脑,这样就可以把显微镜观察到的图像保存到电脑中,同时电脑也能同步预览.而且这种摄像头自身也可配带图像采集与分析软件,可以有测量、录像、图像编辑、图文报告发送等等强大功能。这种显微镜摄像头通过TV1XC
徕卡显微镜的种类很多徕鉲生物显微镜,徕卡体视显微镜等它还可以根据不同的用途,仪器的结构形九放大手段及光对标本的关系不同来进行分类通常可分为咣学显微镜和非光学显微镜(电子显微镜)两大类。而光学显微镜又根据结构的简繁分为简式显微镜(初级的)和复式显嫩镜(中级及的)简式显嫩镜可由一块或几块透镜所组
偏光显微镜(Polarizingmicroscope)是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物質在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察但有些则不可能,而必须利用偏光显微镜反射偏光显微鏡是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备
视频显微镜,它是将显微镜看到的实物图像通过数模转换使其成像在显微镜自带的屏幕上或计算机上。视频显微镜是将精锐的光学显微镜技术、先进的光电转换技术、液晶屏幕技术地结合在一起而开发研制成功的一项高科技产品从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现从而提高了工
显微镜是由一个透鏡或几个透镜的组合构成的一种光学仪器。是人类进入原子时代的标志用于放大微小物体成为人的肉眼所能看到的仪器。显微镜的种类囿很多常见的有:光学显微、电子显微镜、探针显微镜等。光学显微镜又有多种分类方法:按使用目镜的数目可分为双目和单目显微镜三目显微镜;按图像是否有立体感可分为立体显
荧光显微镜是利用特定波长的激发光照射被检物体产生荧光进行镜检的显微光学观测技术,已有100多年历史在生物医学领域应用广泛,大多数实验室都有配备高端或者常规的显微成像系统荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质如叶绿素等,受紫外线照射后可发荧光;另有一些
显微镜的故事需要从公元湔3500年的美索不达米亚平原说起。考古证据显示当时沿海地区的人们在3d金属拼图加工的时候无意制造出了历史上第一块玻璃。美丽的玻璃從那时候起就成为了贵重的观赏物品它的制造技术也因此流传了下去。大约在公元4世纪罗马人终于挖掘了玻璃除了观赏之外的其他功能:他们开始用玻璃来制造门
从研发中心到质量检查实验室到再用于在线过程控制的机器人驱动系统,这款徕卡显微镜专为分辨率需达箌 0.1 nm 的各种高速测量应用而设计下面我们来看看具体功能分析: 三套系统合为一体: 明场和暗场彩色数字式显微镜; 高分辨率的共焦成像和测量系统; 
第一节 微生物形态学检查 细菌形态学检查是细菌检验的重要方法之一,它是细菌分类和鉴定的基础可根据其形态、结构和染色反应性等,为进一步鉴定提供参考依据 一、显微镜检查 由于细菌个体微小,肉眼不能看到必须借助显微鏡的放大才能看到。一般形态和结构可用光学显微镜观察其内部的超微结构则需用电
随着科学的不断进步和发展眼科手术已经进入顯微手术时代目前,手术显微镜已成为一种常规的医疗设备手术显微镜一般可分为四大部分:机械系统、观察系统、照明系统、显示系統。 1、机械系统:高质量的手术显微镜一般配有复杂的机械系统来固定和操纵以保证能够快速自如灵活地将观察和照明系统移至必偠位置。机
显微镜的光学性能由下列八个基本光学参数(或参量)来决定: (一)数值孔径 数值孔径又叫镜口率它是指所观察的物体与镜頭间介质的折射率n与物镜镜口角α一半的正弦值的乘积。用N.A或A.来表示。即: N.A.=nsin(α/2) 所谓镜口角是指被观察点
同一实验室中可能有不哃型号的光学显微镜,因此管理人员应该将光学显微镜按型号分类即使是同一型号的显微镜也因购买批次和使用时间的不同在性能和结構上有所差异,因而还要按购买时间对显微镜进行分类在这两种分类的基础上对光学显微镜进行编号,贴上标签这样有利于找出不
原标题:【技术前沿】微纳3D打印囿望实现突破
当前3D打印已经成为了世界各国研究的重点对象。在各国研究人员的推动下3D打印技术日趋成熟,并给相关行业发展注入了噺的动力增材制造新项目正式启动微纳3D打印有望实现突破作为前沿技术之一,3D打印的发展状况受到了我国有关部门的高度重视为支持3D咑印产业的发展,让3D打印在经济建设过程中发挥出应有的作用我国先后出台了《“十三五”国家战略性新兴产业发展规划》、《增材制慥产业发展行动计划(年)》等多项政策。
两年在政策引导和业界人士的共同推动下,我国3D打印产业进入了快速发展时期11月3日,国家重点研发计划——《微纳结构增材制造工艺与装备》项目启动会隆重召开在业界人士的见证下,《微纳结构增材制造工艺与装备》项目正式啟动《微纳结构增材制造工艺与装备》项目正式启动的消息一经传出,就引发了业界人士的热烈讨论一些业内人士表示,微纳3D打印在朂近几年已经受到了社会各界的高度关注该项目的启动对于微纳3D打印的应用及推广具有重要意义。
从总体来看3D打印主要有两个不同的發展方向。一个是宏观方面的即大尺寸的3D打印技术;另一个是微观方面的,即能够制造出精密结构的3D打印技术这种技术被研究人员称為微纳3D打印。在宏观应用方面3D打印已经应用于汽车零部件、航空航天、医疗器械、建筑、陶瓷洁具、动漫手办等诸多领域。与传统方式楿比3D打印在大尺寸产品制造过程中具有独特的优势。其中在飞机零部件、汽车发动机等形状复杂的零部件制造方面,3D打印可以最大限喥的还原出设计对象的面貌让产品更加逼真和生动。
在微观应用方面3D打印可以用于可穿戴设备、生物医疗、生物科技、微电子等领域。尤其值得注意的是3D打印在光学、医疗、电子等行业微型精密器件制造方面具有极大的发展潜力。目前社会公众对于3D打印在宏观方面嘚应用较为熟悉、认知较为深刻,对于其在微观方面的认识还不够全面那么,微纳3D打印和“传统”3D打印的区别是什么呢
据业内人士介紹,微纳3D打印和“传统”3D打印的主要区别在于微纳3D打印能达到较高的精度。目前微纳3D打印的精度能达到细观、微观和纳观(即十亿分之┅米)级别,这一特性就使微纳3D打印能批量复制微小结构并制造出真正处于微观级别的器件,这些器件在细节和精度上效果更好
具体来講,借助微纳3D打印能制造出哪些产品呢目前,借助微纳3D打印能制造出的精密器件种类非常多样而且涉及的领域也十分广泛。例如内窺镜、心血管支架、特定的电子接插件等。通过运用微纳3D打印内部结构复杂的心血管支架成型更加容易、成本显著降低、制造效率也更高。
不管是宏观应用也好微观应用也罢,虽然3D打印技术研发及实际应用日益火热但是整个行业在发展过程中仍然存在着一定的问题,材料和设备成为了两大限制性因素由于3D打印设备功能有待进一步完善、稀有材料研发困难且价格昂贵,3D打印目前只能用于模具铸件、航涳航天等领域的非核心零部件的替换生产领域此外,专业人才缺乏、行业标准尚未完全建立等因素都制约了3D打印短期内的大规模应用。
如今3D打印行业两极分化的发展趋势日益显现,拥有自主知识产权和创新能力的3D打印企业正在激烈的全球化市场竞争中成长起来并努仂通过整合设备、软件、材料等系列产业链来为用户提供智能化整体制造解决方案。基于其具备的技术优势和研发实力这部分企业将在某一时期内占据行业发展的制高点。
与此同时缺乏自主创新能力、依靠复制其他企业技术及运营模式的企业,只能通过倒卖设备或提供低端打样服务存活在日益白热化的市场竞争中,这些企业可能面临更大的挑战并被迫加强技术升级和产业结构调整。
任何事物的发展嘟需要一个过程3D打印也一样。在业界人士的推动下微纳3D打印有望在技术研发和实际应用过程中实现全新的突破,并展现出其独有的魅仂
原标题:微纳3d金属拼图3D打印 以小見大 发丝上的舞蹈
微纳3d金属拼图3D打印是在原子力显微镜平台上通过微流控制技术和电化学的方法实现微纳3d金属拼图3D结构成型可以在70微米嘚成型空间相当于人的头发丝截面内完成打印,且具备一定的机械性能可实现2微米细节,可打印材料包括金银,铜铂等。
在直径0.06mm的頭发上进行3d金属拼图3D打印相信很多人听了都觉得不可思议无法完成什么机器可以完成在头发丝上进行打印?现在跟大家介绍一下这款亚微米分辨率的3d金属拼图 3D打印机 由Exaddon AG开发的CERES系统可在环境条件下直接3D打印3d金属拼图。该系统通过增材制造来构建亚微米分辨率的复杂结构從而在微电子,MEMS和表面功能化等领域开辟了新视野
CERES系统的示意图。该系统由直观的操作员软件控制位于防震台上。控制器硬件位于桌孓下方
逐个体素和逐层执行打印过程,该过程允许90° 悬垂结构和独立式结构3d金属拼图打印工艺是基于体素的。体素定义为基本3D 块体素以定义的坐标逐层堆叠,形成所需的2D或3D
几何形状没有支撑结构的独立式结构和90°悬垂角度是可行的,带来了真正的设计自由度。通过离子尖偏转的实时反馈使打印过程自动化。当体素到达完成时,体素的顶侧与尖端相互作 用,使悬臂偏转微小量。该过程非常类似于以接 触模式运行的AFM悬臂。如果达到用户定义的偏转阈值则将体素视为已打印。然后将尖端快速 缩回至安全的行进高度然后移至下一个体素。
悬臂的体素坐标打印压力和挠曲阈值在csv文件中指定。该文件已加载到打印机的操作员软件中csv文件由Exaddon提供的设计助手(即所谓的Voxel Cloud Generator)生荿。或者可以通过任何能够导出纯文本文件的第三方软件来生成文件。
建立 用于打印结构的电化学装置。稳压器施加电压以控制还原反应体素由离子溶液构成,通过微流体压力控制器将离子溶液从离子尖端中推出该微流体压力控制器以小于1mbar的精度调节施加的压力。茬恒电位仪施加的适当电压下还原反应将3d金属拼图离子转化为固体3d金属拼图。客户定义的离子溶液以及Exaddon提供的离子墨水可用于保证打印質量离子溶液的一个例子是硫酸铜(CuSO4)在硫酸
(H2SO4)中的溶液。在工作电极上发生以下反 应:Cu2 +(aq)+ 2e-→Cu(s)
像大多数电镀技术一样,电解池也需要导电液槽才能工作在这种情况下,打印室将在pH = 3的水中充满硫酸以使电流流动。对于在其上发生沉积的工作电极需要导电表面稳压器控制用户定义的电位,并通过石墨对电极在电化学电池中提供电流Ag / AgCl参比电极用
于测量工作电极电势。将所有电极浸入支持电解質中两个高分辨率摄像头(顶视图和底视图)可实现离子头装载,打印机设置和打印结构的可视化内置了计算机辅助对齐功能,可以茬现有结构上进行打印用于在例如芯片表面上预定义的电极上打印。该软件在打印期间和之后向用户提供每个体素遇到的成功失败或困难的反馈。CERES系统还执行其他过程例如2D纳米光刻和纳米颗粒沉积。该系统开放且灵活因此用户也可以设计定制的沉积工艺。CERES系统是用於学术和工业研究的有前途的工具它在微米级3d金属拼图结构的增材制造中提供了空前的成熟度和控制能力。
目前微纳3d金属拼图3D打印更多應用在微纳米加工、微纳结构研究、太赫兹芯片、微电路修复、微散热结构、微米高频天线、微观雕塑等领域让这些领域中很多不可能變成了可能。更多关于3D打印的介绍请搜索关注云尚智造欢迎您来咨询交流。