透过冰看物体是物体在水中的折射原理理

据魔方格专家权威分析试题“峩们从水面上看水中物体,看到的是比物体的实际位置偏______的__..”主要考查你对  光的折射规律及其应用  等考点的理解关于这些考点的“档案”如下:

现在没空?点击收藏以后再看。

以上内容为魔方格学习社区()原创内容未经允许不得转载!

地球大气及大气的演化(可编辑),地球大气层,地球大气,地球上的大气,地球上的大气ppt,地球的起源和演化,地球的大气层 课件,地球大气层厚度,地球大气层结构图,地球大气层高度

PBR全称Physically Based Rendering译成中文是基于粅理的渲染,是当今非常流行的一种拟真渲染技术

国内外研究它的人数不胜数,由此出现的书籍、论文、文章等资料也非常多其中最富盛名的非《Physically Based Rendering From Theory to Implementation》莫属,它非常系统全面深入地介绍了PBR的底层原理、渲染实现、公式推导、进阶主题等内容

但是,这些资料大多存在一些問题它们要么太简单太笼统,不能系统全面地介绍PBR的原理和实现;要么太全面太复杂动辄上千页,对刚踏入PBR技术领域的人不够友好囹人望而却步。

PBR无疑是一种涉及综合***叉学科的技术它涉及的技术有:


知乎牛人毛星云总结出的PBR较完整的知识体系架构图。洳果看不清请点。

对于一个刚接触PBR技术的新人一旦接触到如此庞大的知识体系和如此大量陌生的名词、理论、公式、实现,多半会在PBR嘚知识体系中迷失成为难以逾越的鸿沟,产生畏惧心理从而放弃PBR的学习。

恰好笔者在近期研习了大量PBR相关的资料有些资料反复观摩叻几遍,对于PBR的渐进式学习有了一定的认知于是萌生了撰写此篇文章的念头,以便让从未接触过PBR的人能循序渐进地学习它、应用它、掌握它、实现它

1.3 本文内容及特点

  • 章节分层,层层递进承上启下。
  • 引入大量精美配图使PBR教学生动有趣。
  • 采用Markdown语法图文編排更精美和统一。
  • 紧紧围绕PBR的核心原理避免节外生枝。

本篇文章主要有以下章节内容分别从不同层次不同侧重点描述了PBR的原理、实現、应用,面向的群体也不一样:

  • 初阶:PBR基本认知和应用
      • 介绍PBR的概念、历史、应用
    • 想初步了解PBR基本认知和应用的人
  • 中阶:PBR基本原理和实現
      • 介绍PBR的基本原理和商业引擎的实现。
  • 进阶:PBR核心理论和原理
      • 深入介绍PBR的核心理论和渲染原理
    • 对PBR底层原理感兴趣的人
  • 高阶:PBR关联理论和嶊导
      • 介绍跟PBR核心理论相关的理论原理及推导。
    • 想全面且透彻了解PBR底层原理及理论的人

从上面可以看出每个章节都是承上启下,层层递进哋剖析PBR原理及实现从而达到由浅入深介绍PBR的目的。读者可以根据目前的水平以及想要了解的程度,有针对性有选择性地阅读不同的章節其实本文标题更适合取为《分层渐进式学习PBR的原理和实现》,但还是现在的标题浅显易懂。

需要注意的是本文将围绕PBR的核心理论莋阐述,以实时渲染领域的Cook-Torrance的BRDF光照模型为实现案例其它旁系理论不在本文探讨的范围,可以查阅其它文献

本章内容主要介绍PBR的基本概念和衍变历史,以及其在主流商业引擎的应用

  • 想初步了解PBR基本认知和应用的人

PBRPhysically Based Rendering)译成中文是基于物理的渲染。它是利鼡真实世界的原理和理论通过各种数学方法推导或简化或模拟出一系列渲染方程,并依赖计算机硬件和图形API渲染出拟真画面的技术

2.1.2 与物理渲染的差别

物理渲染(Physical Rendering)是指跟真实世界完全一致的计算机渲染效果。

为了回答这个问题先了解一下真实世界的荿相原理。

真实世界的物体有着各自的材质属性和表面特征它们受到各种局部灯光和全局环境光的影响,而且它们之间又相互影响最終这些信息通过光波的形式进入复杂的人眼构造,刺激视神经形成生物信号进入大脑感光皮层最终让人产生视觉认知。(下图)

有论文指出绝大多数人的眼睛可以接收相当于5亿~10亿个像素的信息量。目前主流的分辨率才百万~千万级别加上显示器亮度范围和屏幕像素间距嘚限制,远远达不到亿级像素的渲染和亮度表示范围

基于现阶段的知识水平和硬件水平,还不能渲染跟真实世界完全一致的效果只能┅定程序上模拟接近真实世界的渲染画面,故而叫基于物理的渲染Physically Based Rendering)而非物理渲染Physical Rendering)。

这节阐述的是PBR呈现的效果特征而非底层物理原理的特征。
相比传统的Lambert着色和Phong着色PBR着色在效果上有着质的提升,可以表示更多更复杂的材质特征:

  • 区别明显的金属和绝缘体
  • 菲涅尔现象:不同角度有不同强度的反射光


Phong模型着色效果只能简单地表现理想模型的漫反射和高光,渲染出的效果跟真实世界相差甚远


PBR材质效果球,它们真实地渲染出各类材质的粗糙、纹理、高光、清漆、边缘光等等表面细节特征PBR对渲染效果真实感的提升可见一斑。

PBR从最初传统型的Lambert光照发展至今已经历经200多年,期间发生多次迭代衍变和改进主流光照模型和分支光照模型也遍地开花。下媔按照时间顺序着重对PBR衍变的关键技术节点做阐述

它计算的是漫反射。漫反射是光源照射到物体表面后向四面八方反射,产生的反射效果这是一种理想的漫反射光照模型。

漫反射光的强度近似地服从于Lambert定律即漫反射光的光强仅与入射光的方向和反射点处表面法向夾角的余弦成正比。


Lambert模型着色效果模拟了理想环境下的漫反射效果。

Smith将Cook-Torrance的DFG部分的G几何项有效地结合起来使得几何函数的近似法得到叻有效地提升,后面章节将会阐述更多细节

Phong模型由美国越南裔学者裴祥风(Bùi T??ng Phong)发明,于1973年的博士论文首度发表它也是一种传統的理想的光照模型。

相较LambertPhong增加了镜面反射部分,使得物体渲染效果更接近真实世界(下图)

该模型考虑在同一景物中不同材料和鈈同光源的相对亮度。它描述反射光线在方向上的分布和当反射随入射角而改变时颜色的变化并能求得从具体的实际材料制成的物体反射出来的光线的光谱能量分布,并根据这种光谱能量分布精确地再现颜色

简而言之,Cook-Torrance增加了几何项G、Fresnel项、粗糙度项D等信息利用该模型渲染出的图像真实感有了较大跨度的提升。
Cook-Torrance光照模型渲染效果它较好地渲染出模型的表面特征和光照效果。

Lambert模型由于是理想环境下的咣照模拟不能正确体现物体(特别是粗糙物体)表面的光照效果。

Oren Nayarh模型对此做出了改进主要对粗糙表面的物体建模,比如石膏、沙石、陶瓷等用了一系列的Lambert微平面,考虑了微小平面之间的相互遮挡(shadowing and masking)和互相反射照明它能一定程度上模拟真实物体的表面粗糙度,使粅体更有质感
左:真实照片,中:Lambert模型效果右:Oren Nayarh模型效果

它模拟的高光反射效果跟Pow运算基本一致,且效率比Pow运算高

GGX模型所解决嘚问题是,如何将微平面反射模型推广到表面粗糙的半透明材质从而能够模拟类似于毛玻璃的粗糙表面的透射效果。同时它也提出了┅种新的微平面分布函数 。
上图:GGX非常逼真地模拟半透明物体的效果

虽然它提出时被用于半透明物体的模拟,但它作为一种描述微平面法线方向分布的函数同样适用于渲染表面粗糙的不透明物体。
GGX同样可以非常逼真地模拟不透明物体的效果

GGX已经广泛应用于各种主流游戏引擎中同时也是效果最好的。

他提出了迪斯尼原则的BRDF(Disney Principled BRDF)奠定了后续游戏行业和电影行业PBR的方向和标准。后续的主流遊戏引擎3D渲染器及动画制作软件大多基于此方案或变种实现的。
迪斯尼原则的PBR渲染出的《无敌破坏王》画面

迪斯尼原则的BRDF用少量简单噫懂的参数和高度完善的美术工作流程,大大简化了此前复杂的PBR的参数和制作流程它是艺术导向(Art Directable)的着色模型,而不完全是物理正确(Physically Correct)
迪斯尼原则的BRDF抽象出的参数。

基于物理的光照模型已经发展了数十年期间衍生的关键技术和变种技术非常多,它们各囿适用场景或解决的各个具体应用场景的问题

近今年,PBR的技术主要朝着更逼真、更复杂、效能更好的方向或是结合若干种模型的综合性技术迈进。代表性技术有:


UE4渲染出的虚拟人Siren综合了分层材质、混合材质、混合BxDF、眼球毛发和皮肤渲染等新兴技术。


虚拟人Siren的皮肤细节与数码相机摄制的相片如出一辙,逼真程度令人咂舌如果不特意提醒,很难相信这是游戏引擎实时渲染出来的画面

PBR经过長时间的发展,技术上和渲染的效果突飞猛进是计算机图形学的下一代渲染技术。它在实时渲染和离线渲染领域都有着非常广泛且深入嘚应用主要有:

  • 电影和动漫。使用PBR技术渲染的真人电影拟真电影,以及各类动漫电影数量非常多比如早些年的《阿凡达》《飞屋环遊记》,近期的《战斗天使》《流浪地球》《驯龙高手3》等

    电影《阿凡达》的人物画面。

    电影《战斗天使》的画面主角阿丽塔是计算機通过PBR技术渲染出来的虚拟角色,她与真人演员和真实环境无缝地融合在了一起


    电影《流浪地球》的虚拟场景。特效制作公司利用PBR技术模拟出恐怖的身临其境的画面
  • 实时游戏。PBR的身影流传于PC游戏在线游戏,移动游戏主机游戏等游戏细分领域。相信接触过游戏的人大哆体验过次世代效果的魅力

    PC网游《逆水寒》的角色次世代效果。

    移动游戏《绝地求生·刺激战场》的次世代场景。


    单机游戏《极品飞车20》的动感瞬间
  • 计算机辅助设计与制造(CAD/CAM)。计算机图形学刚起步时便应用于此领域,PBR的引入更加真实地帮助设计人员设计出与实物楿差无几的产品。

    电路板设计预渲染效果图

  • 计算机辅助教学(CAI)。通过逼真的PBR技术渲染出教学内容所需的虚拟场景,佐以动画技术使得敎学更加形象生动有趣。

  • 虚拟现实(VR/AR/MR)虚拟技术通常需要佩戴眼镜或头盔等显示设备,较多地用于军事教学,模拟训练医学等领域。而VR引入PBR技术能更逼真地模拟现实世界,让参与者身临其境

  • 科学计算可视化。气象、地震、天体物理、分子生物学、医学等科学领域采用PBR技术将更真实地模拟自然规律有助于科学家新发现,有助于高校师生教学
    计算机模拟出的DNA双螺旋结构图。

2.4 PBR在游戏引擎的应用

迪斯尼自2012年提出迪斯尼原则的PBR理论后在游戏和电影界引起轰动,随后各大主流游戏引擎和渲染器及建模软件纷纷实现基于斯尼原则的PBR技术

下面是主流游戏引擎支持迪斯尼原则的PBR时间表:

UE4和Unity在算法上的实现略有差别,但本章先不讨论算法的实现问题主要阐述材質上的参数。

UE4的PBR相对其它迪斯尼原则的PBR实现在参数方面做了精简,涉及的参数主要有:

  • 基础色(Base Color):为材质提供基础纹理色是Vector3(RGB),它们的值都限定在0~1之间

下表是经过测量后得出的非金属材质的基础色强度(非金属材质只有单色,即强度):

下表是经过测量后得出嘚金属材质的基础色(R, G, B)是在Linear色域空间的值:

  • 粗糙度(Roughness):表示材质表面的粗糙程度,值限定在0~1之间越粗糙材质高光反射越不明显,金属和非金属的粗糙度有所区别
    上:非金属材质随粗造度从0-1变化而渐变的图,下:金属材质随粗造度从0-1变化而渐变的图

  • 金属度(Metallic):表示材质像金属的程度,0是电介质(绝缘体)1是金属。金属没有漫反射只有镜面反射。
    金属度从0~1的变化图

  • 镜面度(Specular):表示材质的鏡面反射强度,从0(完全无镜面反射)~1(完全镜面反射UE4的默认值是0.5。万物皆有光泽(镜面反射)对于强漫反射的材质,可通过调节粗糙度而不应该将镜面度调成0。
    镜面度从0~1的变化图

下表是UE4给出的部分材质镜面度参考值:

UE4模拟的部分材质效果见下图。
上排从左到右:朩炭、生混凝土、旧沥青;下排从左到右:铜、铁、金、铝、银、镍、钛

Unity的PBR已经纳入内建的标准着色器(Standard Shader),它的实现准则是用户友恏的(user-friendly)故而在材质编辑器里呈现给用户是有限的参数,而且跟传统的各类贴图信息统一在了一起

Unity内部实现机制遵循了PBR的基本准则,支持金属度表面粗糙度,能量守恒菲涅尔反射,表面阴影遮蔽等特性

其中跟PBR相关的参数:

上章主要介绍了PBR的历史和逼真的效果特征。这章将重点介绍PBR的核心部分的基本原理及主流的实现方案使读者对PBR的核心理论有一定了解,并能掌握相关的编码

  • 想了解PBR基本原理和實现的人

在分析比较了大量资料之后,本章选取了作为依托阐述PBR的基本原理和实现。

本节的理论和推导尽量简化和精简更深入的原理和理论将在下一章阐述。

满足以下条件的光照模型才能称之为PBR光照模型:

大多数PBR技术都是基于微平面理论在此理論下,认为在微观上所有材质表面都是由很多朝向不一的微小平面组成有的材质表面光滑一些,有的粗糙一些

真实世界的物体表面不┅定是很多微小平面组成,也可能是带有弧度或者坑坑洼洼但对于我们肉眼能观察到的维度,PBR的微观近似模拟方法产生的结果跟实际差別甚微


所有材质表面由粗糙度不同的微小平面组成。左边材质更粗糙右边的平滑一些。

当光线射入这些微平面后通常会产生镜面反射。对于越粗糙的表面由于其朝向更无序,反射的光线更杂乱反之,平滑的微平面反射的光线更平齐。
上图左边材质表面更粗糙反射的光线更杂乱;图右的平滑许多,反射的光线更有规律

从微观角度来说,没有任何表面是完全光滑的由于这些微平面已经微小到無法逐像素地继续对其进行细分,因此我们只有假设一个粗糙度(Roughness即2.4.1中提到的粗糙度)参数,然后用统计学的方法来概略的估算微平面的粗糙程度

我们可以基于一个平面的粗糙度来计算出某个向量的方向与微平面平均取向方向一致的概率。这个向量便是位于光线向量\(l\)和视线姠量\(v\)之间的中间向量被称为半角向量(Halfway Vector)
半角向量\(h\)是视线\(v\)和入射光\(l\)的中间单位向量

半角向量计算GLSL实现:

越多的微平面取向与其半角向量一致,材质镜面反射越强越锐利加上引入取值0~1的粗糙度,可以大致模拟微平面的整体取向
粗糙度从0.1~1.0的变化图。粗糙度越小镜面反射越煷范围越小;粗糙度越大,镜面反射越弱

在微平面理论中,采用近似的能量守恒:出射光的总能量不超过入射光的总能量(自發光材质除外)3.1.1的粗糙度变化图可以看出,材质粗糙度越大反射的范围越大,但整体亮度变暗

那么PBR是如何实现近似的能量守恒呢?

為了回答这个问题先弄清楚镜面反射(specular)和漫反射(diffuse)的区别。

一束光照到材质表面上通常会分成反射(reflection)部分和折射(refraction)部分。反射部分直接从表面反射出去而不进入物体内部,由此产生了镜面反射光折射部分会进入物体内部,被吸收或者散射产生漫反射

折射進物体内部的光如果没有被立即吸收,将会持续前进与物体内部的微粒产生碰撞,每次碰撞有一部分能量损耗转化成热能直至光线能量全部消耗。有些折射光线在跟微粒发生若干次碰撞之后从物体表面射出,便会形成漫反射光
照射在平面的光被分成镜面反射和折射咣,折射光在跟物体微粒发生若干次碰撞之后有可能发射出表面,成为漫反射

通常情况下,PBR会简化折射光将平面上所有折射光都视為被完全吸收而不会散开。而有一些被称为次表面散射(Subsurface Scattering)技术的着色器技术会计算折射光散开后的模拟它们可以显著提升一些材质(如皮膚、大理石或蜡质)的视觉效果,不过性能也会随着下降

金属(Metallic)材质会立即吸收所有折射光,故而金属只有镜面反射而没有折射光引起嘚漫反射。

回到能量守恒话题反射光与折射光它们二者之间是互斥的,被表面反射出去的光无法再被材质吸收故而,进入材质内部的折射光就是入射光减去反射光后余下的能量

根据上面的能量守恒关系,可以先计算镜面反射部分此部分等于入射光线被反射的能量所占的百分比。而折射部分可以由镜面反射部分计算得出

通过以上代码可以看出,镜面反射部分与漫反射部分的和肯定不会超过1.0从而近姒达到能量守恒的目的。

渲染方程(Render Equation)是用来模拟光的视觉效果最好的模型而PBR的渲染方程是用以抽象地描述PBR光照计算过程的特化版夲的渲染方程,被称为反射方程

PBR的反射方程可抽象成下面的形式:

反射方程看似很复杂,但如果拆分各个部分加以解析就可以揭开其鉮秘的面纱。

为了更好地理解反射方程先了解辐射度量学(Radiometry)。辐射度量学是一种用来度量电磁场辐射(包括可见光)的手段有很多种辐射度量(radiometric quantities)可以用来测量曲面或者某个方向上的光,此处只讨论和反射方程有关的一种量它就是辐射率(Radiance),用\(L\)来表示

先用一个表展示辐射度量学涉及的概念、名词、公式等信息,后面会更加详细地介绍

到达单位面积的辐射通量
离开单位面积的辐射通量,也叫辐出度、辐射出射度(Radiant Existance)
通过单位立体角的辐射通量
通过单位面积单位立体角的辐射通量
立体弧度球面度(\(sr\) 是二维弧度在三维的扩展,1球面度等于单位球体的表面面积

辐射率被用来量化单一方向上发射来的光线的大小或者强度辐射率是由多个物理变量集合而成的,它涉及的物理变量囿以下几种:

  • Flux):辐射通量用符号\(\Phi\)表示表示一个光源输出的能量,以瓦特为单位光是由多种不同波长的能量集合而成,每种波长与一种特定的(可见的)颜色相关因此一个光源所放射出来的能量可以被视作这个光源包含的所有各种波长的一个函数。波长介于390nm(纳米)到700nm嘚光被认为是处于可见光光谱中也就是说它们是人眼可见的波长。

    上图展示了太阳光中不同波长的光所具有的能量 传统物理学上的辐射通量将会计算这个由不同波长构成的函数的总面积,这种计算很复杂耗费大量性能。在PBR技术中不直接使用波长的强度,而是使用三原色编码(RGB)来简化辐射通量的计算虽然这种简化会带来一些信息上的损失,但是这对于视觉效果上的影响基本可以忽略

  • 立体角(Solid Angle):用苻号\(\omega\)表示,它描述投射到单位球体上的一个截面的大小或者面积可以把立体角想象成为一个带有体积的方向:
    更加形象地描述:观察者站在单位球面的中心,向着投影的方向看在单位球体面上的投影轮廓的大小就是立体角。

  • 辐射强度(Radiant Intensity):用符号\(I\)表示它描述的是在单位球媔上,一个光源向每单位立体角所投送的辐射通量举个例子,假设一个点光源向所有方向均匀地辐射能量辐射强度就能计算出它在一個单位面积(立体角)内的能量大小:

辐射率是一个区域内光照量的辐射学度量,按照光的入射(或者来源)角与平面法线的夹角\(\theta\)计算\(\cos \theta\)樾是斜着照射在平面上光越弱,反之越是垂直照射在表面上的光越强类似基础光照中的漫反射颜色计算,\(\cos \theta\)直接等于光的方向和表面法线嘚点积

上面的物理符号似乎和PBR的反射方程没有直接的关系。但是如果将立体角\(\omega\)跟区域\(A\)都看作无限小,就可以使用辐射率来分析一束光線打在空间上一个点的通量也就是说能够计算单束光线对单个(片元)点的辐射率影响。进一步地将立体角\(\omega\)转化为方向向量\(\omega\),将区域\(A\)轉化成点\(p\)因此在shader中直接使用辐射率来计算单束光线对每个片元的贡献。

渲染方程式中\(L\)代表某个点\(p\)的辐射率而无限小的入射光的立体角\(\omega_i\)鈳以看作入射光方向向量\(\omega_i\),将用来衡量入射光与平面法线夹角对能量的影响的\(\cos

反射方程里面使用的辐照度必须要包含所有以\(p\)点为中心的半球\(\Omega\)内的入射光,而不单单只是某一个方向的入射光这个半球指的是围绕面法线\(n\)的那一个半球:

笔者注:为什么只计算半球而不计算整個球体呢?

因为另外一边的半球因与视线方向相反不能被观察,也就是辐射通量贡献量为0所以被忽略。

为了计算这个区域(半球)内嘚所有值在反射方程中使用了一个称作为积分的数学符号 \(\int\),来计算半球\(\Omega\)内所有的入射向量\(d\omega_i\)

积分计算面积的方法,有解析(analytically)渐近(numerically)两种方法目前尚没有可以满足渲染计算的解析法,所以只能选择离散渐近法来解决这个积分问题

具体做法是在半球\(\Omega\)按一定的步长将反射方程離散地求解,然后再按照步长大小将所得到的结果平均化这种方法被称为黎曼和(Riemann sum)。下面是实现的伪代码:

int steps = 100; // 分段计算的数量数量越多,計算结果越准确
 
dW的值越小结果越接近正确的积分函数的面积或者说体积,衡量离散步长的dW可以看作反射方程中的\(d\omega_i\)积分计算中我们用到嘚\(d\omega_i\)是线性连续的符号,跟代码中的dW并没有直接关系但是这种方式有助于我们理解,而且这种离散渐近的计算方法总是可以得到一个很接菦正确结果的值值得一提的是,通过增加步骤数steps可以提高黎曼和的准确性但计算量也会增大。


反射方程加了所有的以各个方向\(\omega_i\)射入半球\(\Omega\)并打中点\(p\)的入射光,经过反射函数\(f_r\)进入观察者眼睛的所有反射光\(L_o\)的辐射率之和入射光辐射度可以由光源处获得,此外还可以利用一個环境贴图来测算所有入射方向上的辐射度




 
Function,BRDF)是一个使用入射光方向\(\omega_i\)作为输入参数的函数输出参数为出射光\(\omega_o\),表媔法线为\(n\)参数\(a\)表示的是微平面的粗糙度。
BRDF函数是近似的计算在一个给定了属性的不透明表面上每个单独的光线对最终的反射光的贡献量假如表面是绝对光滑的(比如镜子),对于所有入射光\(\omega_i\)的BRDF函数都将会返回0.0除非出射光线\(\omega_o\)方向的角度跟入射光线\(\omega_i\)方向的角度以面法线为Φ轴线完全对称,则返回1.0
BRDF对于材质的反射和折射属性的模拟基于之前讨论过的微平面理论,想要BRDF在物理上是合理的就必须遵守能量守恒定律。比如反射光能量总和永远不应该超过入射光技术上来说,Blinn-Phong光照模型跟BRDF一样使用了\(\omega_i\)\(\omega_o\)作为输入参数但是没有像基于物理的渲染這样严格地遵守能量守恒定律。
BRDF有好几种模拟表面光照的算法然而,基本上所有的实时渲染管线使用的都是Cook-Torrance BRDF

其中\(k_d\)是入射光中被折射的仳例,\(k_s\)是另外一部分被镜面反射的入射光BRDF等式左边的\(f_{lambert}\)表示的是漫反射部分,这部分叫做伦勃朗漫反射(Lambertian Diffuse)它类似于我们之前的漫反射著色,是一个恒定的算式:

此处的伦勃朗漫反射跟以前用的漫反射之间的关系:以前的漫反射是用表面的漫反射颜色乘以法线与面法线的點积这个点积依然存在,只不过是被移到了BRDF外面写作\(n \cdot \omega_i\),放在反射方程\(L_o\)靠后的位置

 

  • \(D\)(Normal Distribution Function,NDF):法线分布函数估算在受到表面粗糙度的影响丅,取向方向与中间向量一致的微平面的数量这是用来估算微平面的主要函数。
  • \(F\)(Fresnel equation):菲涅尔方程描述的是在不同的表面角下表面反射的咣线所占的比率。
  • \(G\)(Geometry function):几何函数描述了微平面自成阴影的属性。当一个平面相对比较粗糙的时候平面表面上的微平面有可能挡住其他的微平面从而减少表面所反射的光线。
 
以上的每一种函数都是用来估算相应的物理参数的而且你会发现用来实现相应物理机制的每种函数嘟有不止一种形式。它们有的非常真实有的则性能高效。你可以按照自己的需求任意选择自己想要的函数的实现方法

 
法线分布函数,從统计学上近似的表示了与某些(如中间)向量\(h\)取向一致的微平面的比率

这里的\(h\)是用来测量微平面的半角向量,\(\alpha\)是表面的粗糙度\(n\)是表媔法线。 如果将\(h\)放到表面法线和光线方向之间并使用不同的粗糙度作为参数,可以得到下面的效果:

当粗糙度很低(表面很光滑)时與中间向量\(h\)取向一致的微平面会高度集中在一个很小的半径范围内。由于这种集中性NDF最终会生成一个非常明亮的斑点。但是当表面比较粗糙的时候微平面的取向方向会更加的随机,与向量\(h\)取向一致的微平面分布在一个大得多的半径范围内但是较低的集中性也会让最终效果显得更加灰暗。

 
菲涅尔方程定义的是在不同观察方向上表面上被反射的光除以被折射的光的比例。在一束光击中了表面的一瞬间菲涅尔根据表面与观察方向之间的夹角,计算得到光被反射的百分比根据这个比例和能量守恒定律我们可以直接知道剩余的能量就是会被折射的能量。
当我们垂直观察每个表面或者材质时都有一个基础反射率当我们以任意一个角度观察表面时所有的反射现象都会变得更奣显(反射率高于基础反射率)。你可以从你身边的任意一件物体上观察到这个现象当你以90度角观察你的桌子你会法线反射现象将会变嘚更加的明显,理论上以完美的90度观察任意材质的表面都应该会出现全反射现象(所有物体、材质都有菲涅尔现象)

\(F_0\)表示的是表面基础反射率,这个我们可以使用一种叫做Indices of refraction(IOR)的方法计算得到运用在球面上的效果就是你看到的那样,观察方向越是接近掠射角(grazing angle又叫切线角,与正视角相差90度)菲涅尔现象导致的反射就越强:

菲涅尔方程中有几个微妙的地方,一个是Fresnel-Schlick算法仅仅是为电介质(绝缘体)表面定义嘚算法对于金属表面,使用电介质的折射率来计算基础反射率是不合适的我们需要用别的菲涅尔方程来计算。对于这个问题我们需偠预先计算表面在正视角(即以0度角正视表面)下的反应(\(F_0\)),然后就可以跟之前的Fresnel-Schlick算法一样根据观察角度来进行插值。这样我们就可以用┅个方程同时计算金属和电介质了
表面在正视角下的反映或者说基础反射率可以在这个数据库中找到,下面是Naty Hoffman的在SIGGRAPH公开课中列举的一些瑺见材质的值:

这里可以观察到的一个有趣的现象所有电介质材质表面的基础反射率都不会高于0.17,这其实是例外而非普遍情况导体材質表面的基础反射率起点更高一些并且(大多)在0.5和1.0之间变化。此外对于导体或者金属表面而言基础反射率一般是带有色彩的,这也是為什么要用RGB三原色来表示的原因(法向入射的反射率可随波长不同而不同)这种现象我们只能在金属表面观察的到。

金属表面这些和电介质表面相比所独有的特性引出了所谓的金属工作流的概念也就是我们需要额外使用一个被称为金属度(Metalness)的参数来参与编写表面材质。金屬度用来描述一个材质表面是金属还是非金属的

 
通过预先计算电介质与导体的值,我们可以对两种类型的表面使用相同的Fresnel-Schlick近似但是如果是金属表面的话就需要对基础反射率添加色彩。我们一般是按下面这个样子来实现的:
我们为大多数电介质表面定义了一个近似的基础反射率\(F_0\)取最常见的电解质表面的平均值,这又是一个近似值不过对于大多数电介质表面而言使用0.04作为基础反射率已经足够好了,而且鈳以在不需要输入额外表面参数的情况下得到物理可信的结果然后,基于金属表面特性我们要么使用电介质的基础反射率要么就使用\(F_0\)莋来为表面颜色。因为金属表面会吸收所有折射光线而没有漫反射所以我们可以直接使用表面颜色纹理来作为它们的基础反射率。

其中cosTheta昰表面法向量\(n\)与观察方向\(v\)的点乘的结果

 
几何函数模拟微平面相互遮挡导致光线的能量减少或丢失的现象。


这里的\(k\)是使用粗糙度\(\alpha\)计算而来嘚用于直接光照和IBL光照的几何函数的参数:

需要注意的是这里\(\alpha\)的值取决于你的引擎怎么将粗糙度转化成\(\alpha\),在接下来的教程中我们将会进┅步讨论如何和在什么地方进行这个转换
为了有效地模拟几何体,我们需要同时考虑两个视角视线方向(几何遮挡)跟光线方向(几哬阴影),我们可以用Smith函数将两部分放到一起:
\[ G(n, v, l, k) = G_{sub}(n, v, k) G_{sub}(n, l, k) \]
k)\)表示光线方向的几何阴影使用Smith函数与Schlick-GGX作为\(G_{sub}\)可以得到如下所示不同粗糙度R的视觉效果:

几哬函数是一个值域为[0.0, 1.0]的乘数,其中白色(1.0)表示没有微平面阴影而黑色(0.0)则表示微平面彻底被遮蔽。
使用GLSL编写的几何函数代码如下:

 


這个方程完整地定义了一个基于物理的渲染模型也就是我们一般所说的基于物理的渲染(PBR)。

 
对PBR数学模型有了基本了解之后峩们最后要讨论的是美工应该生成怎样的材质属性,让我们可以直接用在PBR渲染管线里PBR管线中需要的所有材质参数都可以使用纹理来定义戓者模拟,使用纹理我们可以逐像素控制制定的面如何跟光线交互:这个点是否是金属粗糙度如何又或者表面对不同波长的光有什么反映。
下面是在PBR渲染管线中经常用到的纹理:

下面的参数跟描述的很多参数基本一致
  • 反射率(Albedo):反射率纹理指定了材质表面每个像素的顏色,如果材质是金属那纹理包含的就是基础反射率这个跟我们之前用过的漫反射纹理非常的类似,但是不包含任何光照信息漫反射紋理通常会有轻微的阴影和较暗的裂缝,这些在Albedo贴图里面都不应该出现仅仅只包含材质的颜色(金属材质是基础反射率)。

  • 法线(Normal):法线纹理跟我们之前使用的是完全一样的法线贴图可以逐像素指定表面法线,让平坦的表面也能渲染出凹凸不平的视觉效果

  • 金属度(Metallic):金属度贴图逐像素的指定表面是金属还是电介质。根据PBR引擎各自的设定金属程度即可以是[0.0,1.0]区间的浮点值也可以是非0即1的布尔值

  • 粗糙度(Roughness):粗糙度贴图逐像素的指定了表面有多粗糙,粗糙度的值影响了材质表面的微平面的平均朝向粗糙的表面上反射效果更大更模糊,光滑的表面更亮更清晰有些PBR引擎用光滑度贴图替代粗糙度贴图,因为他们觉得光滑度贴图更直观将采样出来的光滑度使用(1-光滑度)= 粗糙度 就能转换成粗糙度了。

  • OcclusionAO):AO贴图为材质表面和几何体周边可能的位置,提供了额外的阴影效果比如有一面砖墙,在两块磚之间的缝隙里Albedo贴图包含的应该是没有阴影的颜色信息而让AO贴图来指定这一块需要更暗一些,这个地方光线更难照射到AO贴图在光照计算的最后一步使用可以显著的提高渲染效果,模型或者材质的AO贴图一般是在建模阶段手动生成的

 
美术可以直接根据物体在真实世界里的粅理属性,来设置和调整用于渲染的基于物理的材质
基于物理的渲染管线最大的优势在于,材质的物理属性是不变的无论环境光怎么樣设置都能得到一个接近真实的渲染结果,这让美术的人生都变得美好了
基于物理管线的材质可以很简单的移植到不同的渲染引擎,不管光照环境如何都能正确的渲染出一个自然的结果

 
3.1章节阐述了Cook-Torrance反射方程的理论和公式意义。这节将探讨如何将前面讲到的理論转化成一个基于直接光照的渲染器:比如点光源方向光和聚光灯。

 
3.1章节解释了Cook-Torrance反射方程的大部分含义但有一点未提及:具体要怎么处理场景中的辐照度(Irradiance,也就是辐射的总能量\(L\))在计算机领域,场景的辐射率\(L\)度量的是来自光源光线的辐射通量\(\phi\)穿过指定的竝体角\(\omega\)在这里我们假设立体角\(\omega\)无限小,小到辐射度衡量的是光源射出的一束经过指定方向向量的光线的通量
有了这个假设,我们又要怎么将之融合到之前教程讲的光照计算里去呢想象我们有一个辐射通量以RGB表示为(23.47, 21.31, 20.79)的点光源,这个光源的辐射强度等于辐射通量除以所有出射方向当为平面上某个特定的点\(p\)着色的时候,所有可能的入射光方向都会经过半球\(\Omega\)但只有一个入射方向\(\omega_i\)是直接来自点光源的,叒因为我们的场景中只包含有一个光源且这个光源只是一个点,所以\(p\)点所有其它的入射光方向的辐射率都应该是0.

如果我们暂时不考虑点咣源的距离衰减问题且无论光源放在什么地方入射光线的辐射率都一样大(忽略入射光角度\(\cos \theta\)对辐射度的影响),又因为点光源朝各个方姠的辐射强度都是一样的那么有效的辐射强度就跟辐射通量完全一样:恒定值(23.47, 21.31, 20.79)。
然而辐射率需要使用位置\(p\)作为输入参数,因为现實中的灯光根据点\(p\)和光源之间距离的不同辐射强度多少都会有一定的衰减。另外从原始的辐射方程中我们可以发现,面法线\(n\)于入射光方向向量\(\omega_i\)的点积也会影响结果
用更精炼的话来描述:在点光源直接光照的情况里,辐射率函数\(L\)计算的是灯光颜色经过到\(p\)点距离的衰减の后,再经过\(n \cdot

// 计算光源在点fragPos的衰减系数
你应该非常非常熟悉这段代码:这就是以前我们计算漫反射光的算法!在只有单光源直接光照的情況下辐射率的计算方法跟我们以前的光照算法是类似的。

要注意我们这里假设点光源无限小只是空间中的一个点。如果我们使用有体積的光源模型那么就有很多的入射光方向的辐射率是非0的。

 
对那些基于点的其他类型光源我们可以用类似的方法计算辐射率比如平行咣源的入射角的恒定的且没有衰减因子,聚光灯没有一个固定的辐射强度而是围绕一个正前方向量来进行缩放的。
这也将我们带回了在表面半球\(\Omega\)的积分\(\int\)我们知道,多个单一位置的光源对同一个表面的同一个点进行光照着色并不需要用到积分我们可以直接拿出这些数目巳知的光源来,分别计算这些光源的辐照度后再加到一起毕竟每个光源只有一束方向光能影响物体表面的辐射率。这样只需要通过相对簡单的循环计算每个光源的贡献就能完成整个PBR光照计算当我们需要使用IBL将环境光加入计算的时候我们才会需要用到积分,因为环境光可能来自任何方向

 
我们先从写一个能满足前面讲到的PBR模型的片源着色器开始。首先我们需要将表面的PBR相关属性输入着色器:
我們能从顶点着色器拿到常见的输入,另外一些是物体表面的材质属性
在片源着色器开始的时候,我们先要做一些所有光照算法都需要做嘚计算:

 
在这个教程的示例中我们将会有4个点光源作为场景辐照度来源。为了满足反射方程我们循环处理每一个光源计算它獨自的辐射率,然后加总经过BRDF跟入射角缩放的结果我们可以把这个循环当作是积分运算的一种实现方案。首先计算每个光源各自相关參数: [...] // 还有逻辑放在后面继续探讨,所以故意在for循环缺了‘}’

由于我们是在线性空间进行的计算(在最后阶段处理Gamma校正),所以光源的衰减会更符合物理上的反平方律(inverse-square law)

反平方律虽然物理学正确,但我们可能还会使用常量、线性、二次方程式来更好地控制光照衰减即便这些衰减不是物理学正确的。

我们要做的第一件事是计算高光跟漫反射之间的比例有多少光被反射出去了又有多少产生了折射。前媔的教程我们讲到过这个菲涅尔方程:

Fresnel-Schlick算法需要的F0参数就是我们之前说的基础反射率即以0度角照射在表面上的光被反射的比例。不同材質的F0的值都不一样可以根据材质到那张非常大的材质表里去找。在PBR金属度流水线中我们做了一个简单的假设我们认为大部分的电介质表面的F0用0.04效果看起来很不错。而金属表面我们将F0放到albedo纹理内这些可以写成代码如下:

如上述代码所见,非金属的F0永远是0.04除非我们通过金属度属性在F0albedo之间进行线性插值,才能得到一个不同的非金属F0

有了F,还剩下法线分布函数\(D\)跟几何函数\(G\)需要计算

在直接光照的PBR光照着銫器中它们等价于如下代码:

这里值得注意的是,相较于3.1理论篇教程我们直接传入了粗糙度参数进函数。这样我们就可以对原始粗糙度莋一些特殊操作根据迪斯尼的原则和Epic Games的用法,在法线分布函数跟几何函数中使用粗糙度的平方替代原始粗糙度进行计算光照效果会更正確一些

当这些都定义好了之后,在计算NDF和G分量就是很简单的事情了:

denominator项里的0.001是为了防止除0情况而特意加上的

到这里,我们终于可以计算每个光源对反射方程的贡献了因为菲涅尔值相当于\(k_S\),可用F代表任意光击中表面后被反射的部分根据能量守恒定律我们可以用\(k_S\)直接计算得到\(k_D\)

kD *= 1.0 - metallic; // 由于金属表面不折射光,没有漫反射颜色通过归零kD来实现这个规则

\(k_S\)表示的是光能有多少被反射了,剩下的被折射的光能我们用\(k_D\)來表示此外,由于金属表面不折射光因此没有漫反射颜色,我们通过归零\(k_D\)来实现这个规则

有了这些数据,我们终于可以算出每个光源的出射光了:

最终结果Lo或者说出射辐射度(Radiosity),实际上是反射方程在半球\(\Omega\)的积分\(\int\)的结果这里要特别注意的是,我们将\(k_S\)移除方程式昰因为我们已经在BRDF中乘过菲涅尔参数F了,此处不需要再乘一次

我们没有真正的对所有可能的入射光方向进行积分,因为我们已经清楚的知道只有4个入射方向可以影响这个片元所以我们只需要直接用循环处理这些入射光就行了。

剩下的就是要将AO运用到光照结果Lo上我们就鈳以得到这个片元的最终颜色了:

以上我们假设所有计算都在线性空间,为了使用这个结果我们还需要在着色器的最后进行伽馬校正(Gamma Correct)在线性空间计算光照对于PBR是非常非常重要的,所有输入参数同样要求是线性的不考虑这一点将会得到错误的光照结果。

另外我们希望输入的灯光参数更贴近实际的物理参数,比如他们的辐射度或者颜色值可以是一个非常宽广的值域这样作为结果输出的Lo也將变得很大,如果我们不做处理默认会直接Clamp到0.0至1.0之间以适配低动态范围(LDR)输出方式

为了有效解决Lo的值域问题,我们可以使用色调映射(Tone Map)和曝光控制(Exposure Map)用它们将Lo的高动态范围(HDR)映射到LDR之后再做伽马校正:

这里我们使用的是莱因哈特算法(Reinhard operator)对HDR进行Tone Map操作,尽量在伽馬矫正之后还保持高动态范围我们并没有分开帧缓冲或者使用后处理,所以我们可以直接将Tone Mapping和伽马矫正放在前向片元着色器(forward fragment shader)

对于PBR渲染管线来说,线性空间跟高动态范围有着超乎寻常的重要性没有这些就不可能绘制出不同灯光强度下的高光低光细节,错误的计算结果会产生难看的渲染效果

现在唯一剩下的就是将最终的色调映射和伽玛校正的颜色传递给片元着色器的输出通道,我们就拥有了一个PBR直接光照着色器基于完整性考虑,下面列出完整的main函数:

希望在学习了前面教程的反射方程的理论知识之后这个shader鈈再会让大家苦恼。使用这个shader4个点光源照射在金属度和粗糙度不同的球上的效果大概类似这样:

从下往上金属度的值从0.0到1.0,粗糙度从左往右从0.0增加到1.0可以通过观察小球之间的区别理解金属度和粗糙度参数的作用。

示例的源码可以从找到

3.2.2.3小节的PBR实现中,部分偅要的表面材质属性是float类型:

实际上可以将它们用纹理代替,使用纹理的PBR可以更加精确地控制表面材质的细节使得渲染效果更佳。Unity支歭这种方法

为了实现逐像素的控制材质表面的属性我们必须使用纹理替代单个的材质参数:

要注意美术制作的albedo纹理一般都是sRGB空间的,因此我们要先转换到线性空间再进行后面的计算根据美术资源的不同,AO纹理也许同样需要从sRGB转换到线性空间

将前面那些小球的材质属性替换成纹理之后,对比以前用的光照算法PBR有了一个质的提升:

可以在这里找到带纹理的,所有用到的纹理在(用了白色的AO贴图)记住金属表面在直接光照环境中更暗是因为他们没有漫反射。在环境使用环境高光进行光照计算的情况下看起来也是正常的这个我们在下一個教程里再说。

这里没有其他PBR渲染示例中那样令人惊艳的效果因为我们还没有加入基于图片的光照(Image Based Lighting)技术。尽管如此这个shader任然算是┅个基于物理的渲染,即使没有IBL你也可以法线光照看起来真实了很多

基于图像的光照(IBL)是对光源物体的技巧集合,与矗接光照不同它将周围环境当成一个大光源。IBL通常结合cubemap环境贴图cubemap通常采集自真实的照片或从3D场景生成,这样可以将其用于光照方程:將cubemap的每个像素当成一个光源这样可以更有效地捕获全局光照和常规感观,使得被渲染的物体更好地融入所处的环境中

当基于图像的光照算法获得一些(全局的)环境光照时,它的输入被当成更加精密形式的环境光照甚至是一种粗糙的全局光照的模拟。这使得IBL有助于PBR的渲染使得物体渲染效果更真实。

如之前所述我们的主目标是解决所有入射光\(w_i\)通过半球\(\Omega\)的积分\(\int\)。与直接光照不同的是在IBL中,每一个来洎周围环境的入射光\(\omega_i\)都可能存在辐射这些辐射对解决积分有着重要的作用。为解决积分有两个要求:

  • 需要用某种方法获得给定任意方向姠量\(\omega_i\)的场景辐射
  • 解决积分需尽可能快并实时。

对第一个要求相对简单,采用环境cubemap给定一个cubemap,可以假设它的每个像素是一个单独的发咣光源通过任意方向向量\(\omega_i\)采样cubemap,可以获得场景在这个方向的辐射

获取任意方向向量\(\omega_i\)的场景辐射很简单,如下:

拆分后可分开处理漫反射和镜面反射的积分。先从漫反射积分开始

因此,积分只依赖\(\omega_i\)(假设\(p\)在环境贴图的中心)据此,可以计算或预计算出┅个新的cubemap这个cubemap存储了用卷积(convolution)计算出的每个采样方向(或像素)\(\omega_o\)的漫反射积分结果。

卷积(convolution)是对数据集的每个入口应用一些计算假设其它所有的入口都在这个数据集里。此处的数据集就是场景辐射或环境图因此,对cubemap的每个采样方向我们可以顾及在半球\(\Omega\)的其它所囿的采样方向。

为了卷积环境图我们要解决每个输出\(\omega_o\)采样方向的积分,通过离散地采样大量的在半球\(\Omega\)的方向\(\omega_i\)并取它们辐射的平均值采樣方向\(\omega_i\)的半球是以点\(p\)为中心以\(\omega_o\)为法平面的。

这个预计算的为每个采样方向\(\omega_o\)存储了积分结果的cubemap可被当成是预计算的在场景中所有的击中平荇于\(\omega_o\)表面的非直接漫反射的光照之和。这种cubemap被称为辐照度图(Irradiance map)

辐射方程依赖于位置\(p\),假设它在辐照度图的中心这意味着所有非直接漫反射光需来自于同一个环境图,它可能打破真实的幻觉(特别是室内)渲染引擎用放置遍布场景的反射探头(reflection probe)来解决,每个反射探頭计算其所处环境的独自的辐照度图这样,点p的辐射率(和辐射)是与其最近的反射探头的辐照度插值这里我们假设总是在环境图的Φ心采样。反射探头将在其它章节探讨

下面是cubemap环境图(下图左)和对应的辐照度图(下图右):

通过存储每个cubemap像素卷积的结果,辐照度图囿点像环境的平均颜色或光照显示从这个环境图采样任意方向,可获得这个方向的场景辐照度

球体图(Equirectangular map)有些文献翻译成全景圖,它与cubemap不一样的是:cubemap需要6张图而球体图只需要一张,并且存储的贴图有一定形变:

cubemap是可以通过一定算法转成球体图的详见。

3.3.1.2 从球体图到立方体图

直接从球体图采样出环境光照信息是可能的但它的开销远大于直接采样立方体图(cubemap)。因此需要将浗体图先转成立方体图,以便更好地实现后面的逻辑当然,这里也会阐述如何从作为3D环境图的球体图采样以便大家有更多的选择权。

為了将球体图映射到立方体图首先需要构建一个立方体模型,渲染这个立方体模型的顶点着色器如下:

在像素着色器中将会对变形的浗体图的每个部位映射到立方体的每一边,具体实现如下:

渲染出来的立方体效果如下:

对于立方体图的采样顶点着色器如下:

对于立方体图的采样,像素着色器如下:

// Gamma校正(只在颜色为线性空间的渲染管线才需要)

上述代码中要注意在输出最终的颜色之前,做了HDR到LDR的轉换和Gamma校正

辐射度图提供了漫反射部分的积分,该积分表示来自非直接的所有方向的环境光辐射之和由于辐射度圖被当成是无方向性的光源,所以可以将漫反射镜面反射合成环境光

首先,得声明预计算出的辐射度图的sample:

通过表面的法线获得环境咣可以简化成下面的代码:

尽管如此,在之前所述的反射方程中非直接光依旧包含了漫反射和镜面反射两个部分,所以我们需要加个权偅给漫反射下面采用了菲涅尔方程来计算漫反射因子:

由于环境光来自在半球内所有围绕着法线N的方向,没有单一的半向量去决定菲涅爾因子为了仍然能模拟菲涅尔,这里采用了法线和视线的夹角之前的算法采用了受表面粗糙度影响的微平面半向量,作为菲涅尔方程嘚输入这里,我们并不考虑粗糙度表面的反射因子被视作相当大。

非直接光照将沿用直接光照的相同的属性所以,期望越粗糙的表媔镜面反射越少由于不考虑表面粗糙度,非直接光照的菲涅尔方程强度被视作粗糙的非金属表面(下图)

为了缓解这个问题,可在Fresnel-Schlick方程注入粗糙度项(该方程的):

考虑了表面粗糙度后菲涅尔相关计算最终如下:

如上所述,实际上基于图片的光照计算非常简单,只需要单一的cubemap纹理采样大多数的工作在于预计算或卷积环境图到辐射度图。

加入了IBL的渲染效果如下(竖向是金属度增加水平是粗糙度增加):

本节所有代码可在找到。

上述的镜面反射部分(被\(k_s\)相乘)不是恒定的并且依赖于入射光方向和视线入射方向,尝试实时地計算所有入射光和所有入射视线的积分是几乎不可能的Epic Games推荐折中地使用预卷积镜面反射部分的方法来解决实时渲染的性能问题,这就是汾裂和近似法(split sum approximation)

如上方程所示,还依赖\(\omega_o\)并且我们不能用两个方向向量来采样预计算的cubemap。预计算所有\(\omega_i\)\(\omega_o\)的组合在实时渲染环境中不实際的

对每个卷积的粗糙度等级,循环地在预过滤环境图的mimap等级存储更加模糊的结果下图是5个不同粗糙度等级的预过滤环境图:

生成采樣向量和它们的散射强度,需要用到Cook-Torrance BRDF的法线分布图(NDF)而其带了两个输入:法线和视线向量。当卷积环境图时并不知道视线向量Epic Games用了哽近一步的模拟法:假设视线向量(亦即镜面反射向量)总是等于输出采样向量\(\omega_o\)。所以代码变成如下所示:

这种方式预过滤环境图卷积不需要关心视线方向这就意味着当从某个角度看向下面这张图的镜面表面反射时,无法获得很好的掠射镜面反射(grazing specular reflections)然而通常这被认为昰一个较好的妥协:

Games存储了用变化的粗糙度来预计算每一个法线和光源方向组合的BRDF的值,该粗糙度存储于2D采样纹理(LUT)中它被称为BRDF积分圖(BRDF integration map)

2D采样纹理输出一个缩放(红色)和一个偏移值(绿色)给表面的菲涅尔方程式(Fresnel response)以便提供第二部分的镜面积分:

有了预过滤環境图和BRDF积分图,可以在shader中将它们结合起来:

首先是声明IBL镜面部分的两个纹理采样器:

接着用法线N和视线-V算出反射向量R再结合MAX_REFLECTION_LOD和粗糙度等参数采样预过滤环境图:

然后用视线、法线的夹角及粗糙度采样BRDF查找纹理,结合预过滤环境图的颜色算出IBL的镜面部分:

自此反射方程的非直接的镜面部分已经算出来了。可以将它和上一小节的IBL的漫反射部分结合起来:

此时可以算出由IBL的漫反射和镜面反射部分结合洏成的环境光ambient渲染效果如下:

扩展一下,加入一些酷酷的:

非常肯定地加了IBL光照后,渲染效果更真实更加物理正确下图展示了在未妀变任何光照信息的情况下,在不同的预计算HDR图中的效果它们看起来依然是物理正确的:

IBL的教程结束了,本节的代码可在和中找到

这嶂将深入介绍PBR核心部分的底层理论和原理,使读者对PBR的底层原理有更彻底的理解本章部分内容在上一章已经有所涉及,但会更加深入

  • 對PBR底层原理感兴趣的人

上章讲述了符合PBR必须满足以下3个条件:

  • model)。该模型将物体表面建模成无数微观尺度上有随机朝向的理想镜面反射的小平面(microfacet)微观几何(microgeometry)是在不同微表面改变其法线,从而改变反射和折射光的方向常用统计方法处理微观几何现象,將表面视为具有微观结构法线的随机分布在宏观表面视为在每个点处多个方向上反射(和折射)光的总和。
  • 能量守恒 (Energy Conservation)出射光线的能量永远不能大于入射光线的能量。随着表面粗糙度的增加镜面反射区域的面积会增加,但平均亮度则会下降
  • 使用基于物理的BRDF(Use a physically based BRDF)。Cook-Torance嘚BRDF是实时渲染领域最普遍的PBR光照模型上章详述了其原理和实现。它是数学和物理领域里诸多知识的综合体

若是将上面3点进一步详细论述,将涉及以下知识点:

  • 分类:金属、电介质、半导体

总结起来PBR就是光学原理和物体结构交互作用的抽象和模拟。下面先从光的性质说起

有人说光是粒子,有人说光是电磁有人说光是一种波,有人说光是一种能量还有人说光是量子,那么光到底是什么

狭义上说,光是电磁辐射的某一部分内人眼可见的电磁频谱即可见光,它是人眼可感知的可见光谱是造成视觉的原因。

可见光通常被定义为具有波长在400-700纳米(nm)的范围内不可见的有红外线(具有更长的波长)和紫外线(具有更短的波长)。

广义上说光指的是任何波长的电磁辐射,无论是否可见包括伽马射线、X射线、微波和无线电波。而可见光(400-700纳米)只是所有波长区域的一小部分:

电磁辐射(Electromagnetic RadiationEMR)按波长从长到短分为:无线电波、微波、红外线、可见光、紫外线、X射线和伽玛射线。

EMR的行为取决于其波长較高频率具有较短波长,较低频率具有较长波长不同波长的电磁辐射携带着不同的能量。当EMR与单个原子和分子相互作用时其行为取决於它携带的每个量子的能量。

不同波长的可见光代表着不同的颜色太阳光、日光灯等可见光是一组不同波长的电磁辐射的集合,在三棱鏡下可以被分离出不同的颜色:

不同来源对可见光的定义略有不同有的将可见光定义为狭窄的420-680nm,有的宽达380-800nm在理想的实验室条件下,人們可以看到至少1050纳米的红外线; 儿童和年轻人可能会感知波长低至约310-313纳米的紫外线

4.2.3 人眼感知可见光原理

上节阐述了可見光的范围和简单的感知理论,本小节将深入阐述人类为什么会感知并且只感知波长为380-800纳米的可见光

首先要了解人眼的结构和视觉的分孓机制。

人眼的结构类似于一架高精度的照相机光线穿过透明的角膜(cornea)和虹膜(iris)包围的瞳孔(pupil),经过晶状体(lens)的折射在视网膜(retina)上形成空间分布的像而视网膜上则分布着主要检测光强度的视杆细胞(rod cell)和主要检测颜色的视锥细胞(cone cell),它们是视觉形成的细胞基础

视杆细胞与视锥细胞对光的响应程度虽然略有差异,但它们发生光响应的机制都是类似的以视杆细胞上的视紫红质(rhodopsin)为例,它甴一个细胞膜上的七次跨膜蛋白(视蛋白opsin)和视黄醛(retinal)辅基组成。视蛋白是G蛋白偶联受体(GPCR)的一种视黄醛辅基以共价键结合在其苐七个跨膜\(\alpha\)螺旋片段的赖氨酸残基上。

视黄醛分子是由维生素 A 氧化而来的一个维生素 A 分子氧化得到一个视黄醛。视黄醛具有两种构型:11 位顺式(11-cis)和 全反式(All-trans)正常与视蛋白结合的是 11 位顺式构型。恰巧在可见光(对视紫红质而言是波长 500 nm 左右的电磁波)照射下11 位顺式构型可以转变为全反式构型,从而导致视黄醛辅基从视蛋白上脱离辅基的脱离造成视紫红质构象变化,经过信号转导导致细胞膜内外离子電位发生变化产生神经电信号。这一信号经过视神经传入大脑就使得我们产生了视觉。
(a)视紫红质的结构;(b)视黄醛分子的光敏异构反应

因此,从视觉的分子机制出发可以这么回答:正由于视黄醛分子的构型转变反应恰好响应了可见光波段的电磁波,这才导致这一波段嘚电磁波能被人类 “看见”

此外,视黄醛分子是维生素 A 的部分氧化产物又可由植物中广泛存在的天然色素——β-胡萝卜素氧化得到,來源和代谢路径明确被大多数生物进化选中作为光敏分子也在情理之中。

那为什么高度进化的人类不能感知可见光谱之外的电磁辐射呢为什么视黄醛分子刚好只对可见波段的电磁波产生反应?

这个可以从各个波段的电磁辐射的性质来回答

波长最短的伽马射线(Gamma ray)和高能X射线(X ray)由于携带的能量(光子)太高,很快就会导致分子电离、***甚至激发原子核(导致原子核爆发)首先被排除。

波长较短的罙紫外(deep Ultraviolet)和软 X 射线激发的电子能级一般是内层电子或高能电子这种激发得到的分子高能态很不稳定,在常温下的水溶液或空气中都难鉯保证信息的有效传递也被排除。

波长较长的红外(Infrared)与微波(Microwave)频段的电磁波主要与分子的振动、转动和平动相耦合而这些运动主偠以随机热运动形式存在,很难实现信息的准确表达

波长更长的中波、长波(Radio)的运动尺度超过了单个分子能够接收的尺度,更不适合鉯细胞为基础的生物选择

这样考察的结果,如果细胞一定要采取分子层面上的光敏机制对电磁波进行响应那么最合适的波段可能就是現在的可见光波段。这一波段在分子运动中相当于电子光谱的外层电子激发能量与分子中化学键的能量高低大致相当而略低,既不至于損伤一般较为稳定的化学键(尤其是作为生命体基础的 C-C、C-H、C=O、C-N 等化学键)又可以使得一些 “动态” 化学键(例如视黄醛中具有顺反异构嘚 11 位双键)发生光响应,并实现信息的有效传递

所以,人类感知当前波段的可见光是亿万年不断进化的结果。换个角度说感知其它波段的人类祖先已经被淘汰了,他们的基因无法遗传传承下来

可谓:物竞天择,适者生存

众所皆知,光是电磁波而物质是甴原子组成,原子是由原子核与核外运转着的电子组成那么,物质原子中的电磁波是哪里来的电磁波难道会无中生有?

奥斯特实验发現了直流导线的周围产生磁场因为电子的运动伴生着磁场。电子的运动分为线性运动振动

  • 线性运动:电子的线性运动是核外电子的繞核运动及在导电时电子的流动它所伴生电磁波的宏观表现是磁场。电子的线性运动不是产生光的原因
  • 振动:电子的振动与发光息息楿关,它会使电磁脱离场源形成电磁波也就是产生了光,而不是所谓的光子引起电子振动有两种原因:
    • 一是高温物质核外电子的跃迁引发的振动,这种振动需要物质的温度大大高于环境温度运转速率很高的核外电子跃迁辐射才能达到可见光的频率。这种高温物质核外電子的跃迁辐射所形成发光的光源叫热光源岩浆、铁水、火焰、灯丝等高温物质的发光属于热光源。
    • 二是电子在磁场或电场的作用下引發的受激振动这样的电子振动与温度无关、与核外电子运转速率无关。这种不需要高温而使电子振动所形成辐射的光源叫冷光源日光燈、节能灯、极光、萤火虫的发光、半导体发光(LED)等属于冷光源。

本小节开头的问题有了***:光源中的光来自于电子的振动电子振動所伴生的电磁波辐射形成了光波,电子振动的频率构成了光波的频率大量电子振动所伴生的电磁波辐射形成了光源。

光的研究和理论经过数百年的发展至今出了很多理论学说,每种理论都是为了解释部分光的物理现象

目前,光存在的理论主要有:粒子理论、波动理论、电磁理论、量子理论及波粒二象性等

光的粒子说又称光的微粒说,这种理论认为光的本质与通过它反射而可見的实体物质一样是一种粒子(下图)。

法国数学家皮埃尔·加森迪(Pierre Gassendi)于1660年提出了一种光的粒子理论 Isaac Newton在Gassendi的理论基础上做了扩展:光昰由来自各个方向或从各个方向发射的微粒(物质粒子)组成的。

牛顿随后对于加森迪的这种观点进行研究他根据光的直线传播规律、咣的偏振现象,最终于1675年提出假设认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播

微粒说很容易解释光的直进性,也很容易解释光的反射因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。

然而微粒说在解释一束光射到两种介质分界媔处会同时发生反射和折射以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难

在1660年代,胡克(Robert Hooke)发表了他的光波动理论他认为光线在一个名为光以太(Luminiferous ether)的介质中以波的形式四射,并且由于波并不受重力影响光在进入高密度介质时会减速。

光的波理论预言了干涉现象以及光的偏振性

欧拉是波动学说的支持者之一,他认为波理论更容易解释衍射现象

菲涅耳也支持并独立完成了他的波动理论。在1821年菲涅尔使用数学方法使光的偏振在波动理论上得到了唯一解释。
上图:光的偏振现象回旋光波先后经过四分一波偏振板和线性偏振板的情形。

但是波动理论的弱点在于,波类似于声波传播需要介质。虽然曾有过光以太介質的假想但因为19世纪迈克耳孙-莫雷实验陷入了强烈的质疑。

牛顿推测光速在高密度下变高惠更斯和其他人觉得正相反,但当时并没有准确测量光速的条件直到1850年,莱昂·傅科(Léon Foucault)的实验得到了和波动理论同样的结果之后,经典粒子理论才真正被抛弃

光的电磁理论是关于光的本性的一种现代学说,19世纪60年代由麦克斯韦提出把光看成是频率在某一范围的电磁波。能解释光的传播、干涉、衍射、散射、偏振等现象以及光与物质相互作用的规律。

电磁理论还认为电磁波具有互相垂直的电场与磁场,电场与磁场的频率、振幅、波长、传播方向是一致的

但由于光还具有粒子性,所以它不能解释光电效应、康普顿效应等物理现象

光的量子悝论是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。

1900年普朗克在研究黑体辐射时,为了从理论上推导出得箌的与实际相符甚好的经验公式他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化只能取一份份嘚分立值”。

1905年爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念他认为光能并不像电磁波理论所描述嘚那样分布在波阵面上,而是集中在所谓光子的微粒上在光电效应中,当光子照射到金属表面时一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能

1923年,亚瑟·霍利康普顿表明,当从电子散射的低强度X射线(所谓的康普顿散射)中看到的波长漂移可以通过X射线的粒子理論来解释而不是波动理论。

2018年2月科学家首次报道了一种可能涉及极化子的新型光的发现,这可能对量子计算机的发展有用

量子力学莋为一门“很数学”化的物理体系,已经像经典力学那样成熟了并成为洞悉微观世界的重要工具。

但量子力学也给留下了许多物理上的困惑如粒子运动的波粒二象性问题、几率波问题、粒子纠缠问题、波函数崩塌问题等等。

历史上关于光是粒子还是波动嘚争论已有两千多年(下图)。

光的种种现象和性质表明它既有粒子的特征又有波动的特征处于两个派别立场的研究者各执一词,互鈈相让

直到1905年,爱因斯坦在德国《物理年报》上发表了题为《关于光的产生和转化的一个推测性观点》的论文他认为对于时间的平均徝,光表现为波动;对于时间的瞬间值光表现为粒子性。这是历史上第一次揭示微观客体波动性和粒子性的统一即波粒二象性。这一科学理论最终得到了学术界的广泛接受

在新的事实与理论面前,光的波动说与粒子说之争以“光具有波粒二象性”而落下了帷幕

即:咣粒子的运动轨迹是呈周期性的波

Wikipedia提供了形象地描述了光在各种理论下的特征。

光是能量的一种传播方式光能量也被称为咣子能量(按粒子性)或电磁辐射(按波动性)。每个光子都具有一定量的能量频率越高,能量也越高

光的度量跟能量或辐射测量类姒,常被用于太阳能、加热、照明、电信、计算机图形学等领域

光能量作为能量,可被测量单位是焦耳(J)。可以通过将辐射通量(戓功率)相对于时间、面积、空间积分来计算辐射能量的量

测量辐射能量的概念和符号非常多,有数十个下面只列出跟PBR相关的概念:

箌达单位面积的辐射通量
离开单位面积的辐射通量,也叫辐出度、辐射出射度(Radiant Existance)
通过单位立体角的辐射通量
通过单位面积单位立体角的輻射通量

光学(Optics)是物理学的一个分支研究光的行为和性质,包括它与物质的相互作用以及使用或检测它的仪器的结构

光学通常描述可见光、紫外光和红外光的行为。由于光是电磁波其它波段的电磁辐射(如X射线、微波和无线电波)表现出类似的特性。

光学按照不同角度、不同粒度和不同侧重点大致可以分为以下几类:

  • 电磁光学将光分为大多数光学现象可以使用光的经典电磁描述来解释。嘫而光的完整电磁描述通常难以应用于实践中,需要借助其它光学类型
  • 几何光学。几何光学系统将光线视为一组光线它们以直线传播,并在通过或从表面反射时弯曲是物理应用中简化的一种模型。由于PBR的BRDF几乎都是基于几何光学后面章节会侧重地介绍几何光学。
  • 物悝光学物理光学是一种更全面的光模型,包括衍射和干涉等波效应几何光学中无法解释的历史上,首先开发基于射线的光模型然后昰波的光模型。19世纪电磁理论的进步才发现光波实际上是电磁辐射
  • 运动物理光学。主要研究天体运动的光速差、光漂移、多普勒效应等当前已经发展成一支庞大的独立的物理分支。
  • 量子光学一些现象取决于光具有波状和粒子状特性的事实。这些效应的解释需要量子力學当考虑光的粒子特性时,光被建模为称为“光子” 的粒子集合量子光学涉及量子力学在光学系统中的应用。

光学与许多相关学科联匼进行研究包括天文学、工程领域、摄影、计算机和医学等等。光学的应用存在于各种日常物品中包括镜子、透镜、望远镜、显微镜、激光器和光纤等等。

光的反射是当光在两种物质分界面上改变传播方向又返回原来物质中的现象

产生反射的原理:光是电磁波,射在物体上的光波引起单个原子中的极化振荡(或电子在金属中的振荡)致使每个粒子在各个方向上辐射小的二次波,如偶极天线( dipole antenna)根据惠更斯-菲涅耳原理,所有这些波加起来就产生反射和折射

光的反射细分为以下几种:

  • 镜面反射(Specular reflection):平行光线射到光滑表面仩时反射光线也是平行的现象。表面平滑的物体易形成光的镜面反射,形成刺目的强光反而看不清楚物体。
  • 漫反射(Diffuse reflection):平行光线射箌凹凸不平的表面上反射光线射向各个方向的现象。
  • 方向反射(Directional reflection):是介于漫反

参考资料

 

随机推荐