线性代数求秩技巧,极大线性无关组问题

二、极大无关组相关的定理、推論

 同理D的列向量组也线性无关

四、向量组的秩与极大无关组的示例

 六、向量空间的基与维数

向量空间第一节后半部分及它的其它章节(向量的内积、长度、夹角;向量组的正交化)正交距阵.............略............... 

该楼层疑似违规已被系统折叠 

1.我們一般求矩阵的秩都是进行初等行变换把行阶梯化,最后看有多少个非0行个数就是秩。那我能不能进行初等列变换最后看有多少个非零的列呢
2.对于向量组来说,列向量组是必须用初等行变换行向量组必须用初等列变换?对于方程组来说他们的系数矩阵就是列向量組所以只能用初等行变换?在算秩的时候列向量组进行初等行变换,有多少非零行个数就是秩的个数?行向量组必须用初等列变换數有多少非零列,个数就是秩的个数
3.极大无关组是一个向量组,组成这个极大无关组的每一个列向量之间都是线性无关的每一个行向量之间也是线性无关的。而秩的本质是有多少个线性无关在算极大无关组的秩的时候,如果以列向量组形式进行计算行满秩以行向量組形式进行计算列满秩,所以极大无关组是方阵。第三条一定错了因为做题时候见到不止一个极大无关组不是方阵,但我不知道为啥錯了
4.极大无关组是基础解析的一部分还是就是基础解系?他们有什么关系


毕业于河南师范大学计算数学专業学士学位, 初、高中任教26年发表论文8篇。


下载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜体验你的手机镜头里或许有别人想知噵的***。

参考资料

 

随机推荐