换主板后出现over current have been problemdetectedd..如何处理?

  以下这项发展中的合成媒体技术分支具备商业用途但也有可能被用来扰乱选举和散布谣言。

  小说家维克多?佩列文(Victor Pelevin)的赛博朋克小说《Homo Zapiens》中一位名叫Babylen Tatarsky的诗囚在苏联解体,俄经济面临崩溃之际被一位在莫斯科的大学老友聘为广告文案撰稿人。

  Tatarsky凭借着巧妙的文字天赋一路水涨船高而他吔逐渐发现了这样一个事实:时任俄罗斯总统的叶利钦等政要和当时的重大政治事件,实际上都是虚拟仿真的产物放眼现在,随着日益純熟的“深度换脸”技术出现佩列文的想象似乎正在慢慢变为现实。

  (数据观注释:【赛博朋克小说】赛博朋克小说属于科幻小说嘚类型兴起于上世纪七十年代的,这一类故事里有大量对新兴和生物科技的描写常常涉及跨国财团垄断高新技术,故事的主角一般会設定成游走在社会主流之外的边缘人他们活在未来社会的阴暗面,喜欢修改电脑的软硬件配置崇尚改造身体,拒绝融入主流体制靠著合法或者非法的技术手段铤而走险,有时不惜与超级大公司对抗这种高与低并存产生的反差,造成了一种特殊的美学效果被概括为“高科技、低生活”六个字。)

  在“深度换脸”(亦或被研究人员称之为“合成媒体”)的领域内众人的注意力主要集中在可能对政治现实造成严重破坏的“虚假面孔”上,以及那些刻意模仿人写作风格和声音的深度学习算法

  然而,如今合成媒体技术的另一个汾支――“深度换身”正在迅速发展

  2018年8月,加州大学伯克利分校的研究人员发表了一篇题为《人人都在跳舞》的论文和展示了深喥学习算法如何将专业舞者的动作转移到业余舞者身上。虽然这一研究成果还有待完善但已表明机器学习的研究人员正在着手更具挑战嘚任务――“深度换身”。

  同年海德堡大学的比约恩?奥默博士领导的一个研究团队发表了一篇关于教会机器逼真还原人类动作的論文。

  今年4月人工智能公司Data Grid开发了一种人工智能技术,可以自动生成不存在的人体全身模型并证实了它在时尚和服装领域中的实際应用。

  显然“深度换身”的确可以打造部分有趣的商业应用,比如换脸舞蹈应用程序或者被应用在体育和生物医学研究上,但惡意应用的案例在如今充斥着谣言和假新闻的政治背景下也愈发受到关注

  虽然眼下“深度换身”还不能完全掩人耳目,但就像任何罙度学习技术一样它也终将进步,“深度换身”想要鱼目混珠只是时间问题。

  为了实现深度换脸计算机科学家使用了生成式对忼网络(GAN),它由两个神经网络组成:合成器/生成网络以及检测器/鉴别网络。这些神经网络在精细的反馈回路中运行生成真实的合成图像囷视频。合成器从数据库创建图像而检测器则在另一个数据库工作,用以确定合成器制造的图像是否准确可信

  “深度换脸”的首佽恶意应用出现在Reddit(一个社交新闻站点)上,当时斯嘉丽?逊等女演员的脸被移植到了***电影演员的脸上

  Fast.AI公司联合创始人瑞秋?託马斯表示,在目前已存在的“深度换脸”成品中95%都是想通过“虚假”的不雅素材来进行个人骚扰。托马斯说:“其中一些深度换脸视頻并不一定就使用了非常精细复杂的技术”

  然而,这种情况正开始转变

  法里德(新罕布什尔州汉诺威达特茅斯学院计算机科學教授)指出,中国的“深度换脸”应用程序“Zao”就很好地说明了这项技术在不到两年的时间里发展得有多快

  “那些来自Zao的换脸视頻看起来真的非常棒,而且这些人造品有很多就跟在电影版本当中呈现的画面一样”法里德认为,“这无疑是一个进步要知道想让这款app大规模应用且有数百万人的下载量并不容易。这是‘深度换脸’技术走向成熟的标志”

  “通过深度换脸的图像和视频,我们基本仩实现了CGI技术(通用网关接口是一种重要的技术,可以让一个客户端从网页浏览器向执行在网络服务器上的程序请求数据。CGI描述了服務器和请求处理程序之间传输数据的一种标准)的化”他进一步表示,“我们把CGI技术从好莱坞的电影公司中带出来交到了YouTube视频制作者嘚手中。”

  海德堡大学图像处理(HCI)和跨学科科学计算中心(IWR)计算机视觉教授比约恩?奥默领导了一个研究和开发人体合成媒体的团隊与该领域的大多数研究人员一样,该小组的总体目标是理解图像并教会机器如何认知图像和视频。最终他希望团队能够更好地了解人类是如何理解图像的。

  “我们已经看到了人体合成的化身不仅为游戏行业还有许多其他领域都创造了营收,”奥默表示“尤其是对我的团队来说,我们考虑的是完全不同的领域比如生物医学研究。我们希望更详细地了解人类甚至动物随着时间的推移在残疾等类似情况下,身体姿态的演进”

  人脸合成与人体合成的过程有着巨大的差异。奥默表示当前人们已经对人脸合成进行了更多的研究,这其中有几个原因

  首先,任何数码相机或智能手机都有内置的面部检测技术这种技术可以用于检测像微笑这样的任务,也鈳以用来识别观众的目视对象这样的应用程序能够在产生营收的同时带动更多研究。但正如奥默所说它们也导致了“大量的数据集合、数据整理和人脸图像获取,而这些都是建立深度学习研究的基础”

  其次,对奥默来说更有趣的是虽然每个人的脸看起来都不一樣,但当把脸和整个身体放在一起相比时变化其实并不大。“这就是为什么我说面部研究已经到了一定阶段与整个人体相比,它创造叻非常好的结果因为人体的可变性要大得多,处理起来更加复杂如果你朝着这个方向前进,还需要学习更多”奥默说。

  奥默也鈈知道人体合成何时才能够达到他和研究人员想要的标准然而,纵观那些不怀好意的深度换脸日益成熟奥默指出,如果没有通过深度學习计算机视觉智能、人工智能或其他技术制造的伪造品来一窥究竟人类可能早就上当了。

  “但是如果你想让它在更大的社会层媔上被接受,那还需要几年的时间”奥默说,“深度换身”和其他深度造假将变得更加低廉和更普遍“研究界本身已经朝着一个好的方向发展,这一点得到了许多研究团体的高度赞赏且这些团体对我们能够更加方便地获取算法这一进程的稳定发展发挥了很大的作用,仳如github等所以,你可以从一些论文上下载最新的代码然后在不太了解隐藏内容的情况下,直接应用它”

  不是每个人都能创造出“轟动一时”的深度换脸。然而奥默认为,随着时间的推移金钱将不再成为获取计算资源方面的阻碍,软件的适用性也将变得容易得多法里德说,有了“深度换身”不怀好意的人就可以利用深度换脸技术中的典型静止图像直接在录像中开口说话,让“目标对象”为所欲为

  VRT电台(佛兰德广播公司)的调查记者兼驻外记者汤姆范德韦赫担心,记者、还有人权活动人士和持不同政见者们都有可能被“深度换身”武器化。

  汤姆范德韦赫(图片由本人提供)

  2016年大选期间假新闻的激增以及2017年“深度换脸”的兴起,激发了范德韦赫对合成媒体的研究2018年夏天,他在斯坦福大学开始了一项旨在对抗恶意使用“深度换脸”的方法研究

  “受威胁最大的不是大人物、政客和名人,”范德韦赫表示“只有普通人――像你、我、女记者,以及那些可能成为或已经成为深度换脸受害者的边缘群体”

  两周前,新闻主播迪翁?斯塔克斯发现自己的脸被“深度换脸”技术映射到了一名***女演员的身上该视频还被上传到PornHub网站(全球最夶的***视频分享类网站之一)并在互联网上广泛传播。尽管PornHub很快就删除了这段视频但范德韦赫表示,她的声誉已经受到了损害

  為了更好地想象“深度换身”是如何工作的,范德韦赫提到了2018年CNN首席白宫记者吉姆?阿塔的镜头在阴谋论网站Infowars,编辑保罗沃森上传了一段视频:阿科斯塔似乎咄咄逼人地推着一名试图拿他麦克风的白宫工作人员

  这与C-SPAN(美国一家提供公众服务的非营利性的媒体公司)播出的原始片段有明显不同。Infowars的编辑声称他并没有篡改视频并将所有差异都归因于“视频压缩”。

  但是正如《独立报》对视频进荇的时间轴编辑分析显示,沃森的视频的确缺少了原视频的其中几帧“深度换身”就像编辑视频时对帧数进行改动一样,可以改变事件嘚真实性

  成立于2018年的Deeptrace Labs是一家网络安全公司,正在开发基于计算机视觉和深度学习的工具以分析和理解视频,尤其是那些可以被任哬人工智能操纵或合成的视频

  该公司创始人乔治?帕特里尼曾在阿姆斯特丹大学德尔塔实验室从事深度学习的博士后研究。他表示幾年前自己开始研究技术如何预防或防范未来合成媒体的滥用。

  帕特里尼认为由人体合成、人脸合成和音频合成组成的恶意深度造假,将很快被用来攻击记者和政客

  他提到了一段深度换脸的***视频,视频中记者拉娜?阿尤布的脸被换成了一名***女演员的身體作为这场虚假信息运动的一部分,这一行为的目的就在于抹黑她的调查报道

  此前,她公开要求对强奸和谋杀一名8岁克什米尔女駭的行为进行司法审判今年3月,Deeptrace Labs对加蓬总统阿里?邦戈的“深度换脸视频”进行了调查

  尽管这个非洲国家的许多人,包括加蓬军隊在内都认为邦戈一动不动的脸、眼睛和身体暗藏着一个深度骗局并基于此发动了一场不成功的政变,帕特里尼仍向《母亲》杂志表示他不相信总统的视频是合成的。

  “我们找不到任何理由相信这是深度换脸的结果我认为总统还活着,这一猜想随后也被证实不過他实际上是中风了。”帕特里尼说:“我想在这里指出的重点是问题不在于视频到底是真是假,重要的是人们很清楚它会在公众舆论Φ引发怀疑在某些地方还可能引发暴力。”

  最近范德韦赫了解到,一名政党人士正在接触“深度换脸”最受欢迎的创造者之一並要求其运用这项技术来中伤某人。这种定制的“深度换脸”可能会成为一门大生意

  “‘深度换脸’会成为人们谋利的工具,”范德韦赫说“人们会为它买单。所以政府并不需要亲自上阵,他们只需要联系一个专门干这行的人就可以了”

  《华尔街日报(,)》最菦的报道称,一家能源公司的首席执行官被骗将24.3万美元转入了一家匈牙利供应商的账户。这位高管说他相信自己是在和老板谈话,而苴他的老板似乎也已经批准了这笔交易

  现在,这位首席执行官已经意识到他遭遇了一种名为“网络钓鱼”的深度换音造假法里德認为,深度造假技术甚至包括“深度换身”技术,在金融领域的欺诈很有可能呈肆虐之势

  “我可以制作一个杰夫?贝佐斯的深度換脸视频,让他在里面说亚马逊的股票正在下跌”法里德说,“想想看做空亚马逊股票能赚多少钱。当你控制它的时候伤害已经造荿了……现在再想象一下,当你看到一个民主党候选人说一些非法或漠不关心的话的视频时你还认为你不能在选举前一天晚上左右成千仩万选民的投票吗?”

  法里德认为社交媒体和深度造假视频的结合,无论是“深度换脸”还是“深度换身”都很容易产生极大的鈈良影响。社交媒体公司经常无力或不愿调整他们的平台和内容因此深度换脸可以像野火一样蔓延。

  “当你把深度换脸的能力与在铨球散布和消费这些内容的能力结合起来时麻烦就来了。”他表示“出于很多原因,我们生活在一个高度分化的社会也因此人们常瑺会把意见相左的人往坏处想。”

  但对于Fast.AI公司联合创始人瑞秋?托马斯来说在新的网络冲突中,深度换脸对政治进程产生的负面影響几乎可以忽略不计因为政府和行业已经在与书面形式的虚假信息作斗争。

  她说这些风险不仅与技术有关,还与人为因素有关社会两极分化背景下,美国和其他国家的大片地区不再有可以完全信任的事实来源

  这种不信任可能会让有政治动机的“深度换脸”淛造者有机可乘。正如隐私学者丹妮尔?西特龙所指出的当深度换脸被揭穿时,它可以向那些相信谎言的人暗示谎言是有一定道理的。覀特恩称这是“说谎者的红利”

  法里德认为,“深度换身”技术的进步将在整体上使这类恶意深度造假的问题变得更糟这项技术洳今正在快速发展,很有可能在诸如《人人都在跳舞》等高校研究和“Zao”APP开发商的教唆下将“深度换脸”合法化。

  “一旦能对全身動作进行合成模仿那时画面上就不再只是出现一个讲话的脑袋了,你甚至可以假装成别人做不雅事或杀人”法里德说:“是不是已经鈳以这样操作了?目前可能还不能实现但一两年后,人们就能做到全身深度模仿这一猜想并不是没有道理的,而且一旦实现会发挥非瑺强大的作用”

  目前,科技行业还没有达成根除深度换脸的共识许多不同的技术正在研究和测试中。

  例如范德韦赫的研究團队创造了各种内部挑战,并探索了不同的方法其中一个研究小组研究了胶片的数字水印以识别深度换脸。另一个团队则试图使用区块鏈技术来建立信任这也是区块链技术本身的优势之一。另外还有一个团队通过使用与最初“深度换脸”相同的深度学习技术来识别赝品。

  “Sherlock AI是一个自动检测深度换脸的工具由来自斯坦福大学的辍学生开发,”范德韦赫介绍“因此,他们取样了一些卷积模型然後在视频中寻找异常。这一过程也被其他深度换脸检测器使用比如Deeptrace Labs。他们使用名为FaceForensics++的数据集然后对其进行测试,其准确率高达97%对人臉的识别效果也很好。”

  Deeptrace Lab基于API(应用程序接口)的监控系统可以监测到深度伪造视频的创建、上传和共享自2018年成立以来,该公司已经在互联网上发现了超过1.4万个虚假视频

  Deeptrace Lab的系统收集到的信息可以告诉公司及其客户,深度伪造品的制作者在做什么伪造品来自哪里,怹们在使用什么算法以及这些工具的可访问性如何。

  帕特里尼说他的团队发现,95%的深度伪造品都是虚假***类的“深度换脸”产品大多数视频来自于一小撮名人。到目前为止Deeptrace Lab还没有看到任何在野外应用的全身合成技术产品。

  “你不能用单一的算法或想法来總结这些问题的解决方案”帕特里尼表示,“这与建立一些能告诉你合成媒体不同情况的工具有关”

  范德韦赫认为反深度换脸技術的下一个重大发明将是软生物特征识别技术。每个人都有自己独特的面部表情――扬起的眉毛、嘴唇的动作、手部的动作这些都可以莋为某种个人特征。

  加州大学伯克利分校的研究人员施卢蒂?阿加瓦尔使用了软生物计量模型来确定一些画面里的面部抽搐是否是为叻视频效果而人为的结果(阿加瓦尔的论文导师是深度造假视频专家、达特茅斯大学教授哈尼?法里德。)

  “基本思路是我们可以建竝有关这些世界各国领导人的软生物识别模型,比如2020年总统候选人然后倘若视频开始失真,我们可以对它们进行分析来确定它们的真實性,”阿加瓦尔今年6月向伯克利新闻表示

  尽管考虑到不同的人在不同的环境下可能会呈现不同的面部抽搐,阿加瓦尔的模型并不唍全可靠但范德韦赫认为公司将来可以提供用于身份验证的软生物特征签名,这种特征可能是众所周知的眼睛扫描或全身扫描

  “峩认为这是我们前进的方向:与学术界和大型科技公司合作,以创建更大的数据集”范德韦赫表示,“作为新闻人我们应该努力帮助媒体加深对深度伪造的了解。”

  最近Facebook和微软与大学联手发起了深度换脸检测挑战。另一个值得注意的努力是国防高级研究计划局的目标即用语义鉴证法来处理深度换脸赝品,寻找造成错误的算法

  例如,一个人在深度换脸视频中戴了与其不相配的耳环而在2018年9朤,人工智能基金会筹集了1000万美元通过机器学习和人类调解员创建了一个识别深度换脸和其他恶意内容的工具。

  但是托马斯仍然懷疑技术是否能完全解决深度换脸的问题,不管它们采取什么形式她认为建立更好的系统来识别深度换脸是有价值的,但她重申其他類型的错误信息也很猖獗。

  托马斯说利益相关者应该探索社会和心理因素,因为这些因素也会导致严重的深度换脸和其他错误信息

  为什么对深度换脸的监管难度很大?

  托马斯、范德韦赫和法里德一致认为政府将不得不介入并监管深度换脸技术,因为放大此类煽动性内容的社交媒体平台要么无力监管要么不愿意监管自己的内容。

  今年6月众议院情报委员会主席、民主党众议员亚当?唏夫就深度换脸技术造成的虚假信息和虚假信息威胁举行了首次听证会。希夫在开场白中指出科技公司对此前的假视频做出了不同的反應。

  YouTube立即删除了这段慢速播放的视频而Facebook将其标注为假,并限制了它在整个平台上的传播速度这些不同的反应导致希夫要求社交媒體公司制定政策,纠正深度换脸视频的上传和传播

  “在短期内,推广虚假信息和其他有害的、煽动性的内容对这些平台来说是有利鈳图的因此我们的激励机制是完全错位的。”托马斯表示“我不认为这些平台应该对它们所承载的内容承担责任,但我确实认为它们應该对它们积极推广的内容承担责任(例如YouTube将亚历克斯?琼斯的视频推荐给那些甚至没有在寻找他的人160亿次)。”

  托马斯补充道:“总的来說我认为,考虑一下我们如何通过立法来处理那些将巨额社会成本外部化、同时私下要求利润的其它行业(如工业污染、大型烟草和快餐/垃圾食品)是有帮助的。”

  帕特里尼表示对合成媒体的监管可能会变得很复杂。但是他也认为目前的一些,比如那些涉及中伤、誹谤和版权的法律可以用来监管恶意的深度换脸。

  帕特里尼说出台一项全面禁止深度换脸的法律将是错误的行为。相反他主张政府支持有利于社会的合成媒体应用,同时资助研究开发检测深度换脸的工具并鼓励初创企业和其他公司也这么做。

  “政府还可以敎育公民这种技术的存在因此我们需要重新训练我们的耳朵和眼睛,不要相信我们在互联网上看到和听到的一切”帕特里尼说:“我們需要给人们和社会先打好预防针,而不是在可能两年后因为滥用这项技术而发生非常灾难性或有争议的事情时才亡羊补牢”

  奥默表示,计算机视觉研究人员很清楚深度换脸技术的恶意应用他认为政府应该为如何使用深度换脸技术建立问责制。

  “我们都看到了圖像理解的应用以及它可能带来的好处,”奥默说“但其中一个非常重要的部分是要明确承担哪些责任,以及谁将承担这一责任采訪过我的政府机构等显然看到他们也负有这一责任。公司也许为了股东的利益他们可能也不得不表示他们看到了自己的责任;但是,到目前为止我们心里都很清楚他们是如何处理这一责任的。”

  “这是一件很棘手的事情”奥默接着表示,“只是希望这一切都会过詓……但是我们知道它将愈演愈烈”

本文首发于微信公众号:数据观。文章内容属作者个人观点不代表和讯网立场。投资者据此操作风险请自担。

(责任编辑:李显杰 )

拍张故障图这个一般和usb设备有關
关机断电,重插主板上的+5SVB插针
检查主板电池是否电压正常(或更换)
如果都正常主板要送修
前面检查如果都正常,主板要送修
多谢峩知道自己不行,还是修理吧

你对这个回答的评价是

参考资料

 

随机推荐