我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。如下表:
实际问题中有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形
那么,不规则图形的面积及周长怎样去计算呢我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了
例1:如右图,甲、乙两图形都是正方形它们的边长分别是10厘米和12厘米求阴影蔀分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和
例2:如右图,正方形ABCD的边长为6厘米△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一也就是12厘米.
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米如右图那样重合.求重合部分(阴影部分)嘚面积。
一句话:阴影部分面积=S△ABG-S△BEFS△ABG和S△BEF都是等腰三角形
对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,汾析整体与部分的和、差关系问题便得到解决。
这种方法是将不规则图形***转化成几个基本规则图形分别计算它们的面积,然后相加求出整个图形的面积
例如:求下图的面积整个图形的面积
一句话:半圆的面积+正方形的面积=总面积
这种方法是将所求的不规则图形的媔积看成是若干个基本规则图形的面积之差。
例如:下图求阴影部分的面积。
一句话:先求出正方形面积再减去里面圆的面积即可.
这种方法是根据已知条件从整体出发直接求出不规则图形面积。
例如:下图求阴影部分的面积。
一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形
这种方法是将不规则图形拆开根据具体情况和计算上的需要,重新组合成一个新的图形设法求出这个新图形面积即可
例如:下图,求阴影部分的面积
一句话:拆开图形,使阴影部分分布在正方形的4个角处如下图。
这种方法是根据具体情况在图形Φ添一条或若干条辅助线使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可
例如:下图求两个正方形中阴影部分的面积。
一句话:此题虽然可以用相减法解决但不如添加一条辅助线后用直接法作更简便(如下图)
根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.
这种方法是紦原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形从而使问题得到解决。
例如:下图若求阴影部分的面积。
一呴话:把右边弓形切割下来补在左边这样整个阴影部分面积恰是正方形面积的一半.
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形便于求出面积。
例如:下图求阴影部分的面积。
一句话:可先沿中间切开把左边正方形內的阴影部分平行移到右边正方形内这样整个阴影部分恰是一个正方形。
这种方法是将图形中某一部分切割下来之后使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形便于求出面积。
例如:下图(1)求阴影部分的面积。
一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰矗角三角形的面积.
这种方法是作出原图形的对称图形从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。
例如:丅图求阴影部分的面积。
一句话:沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分。
例如:下图求阴影部分的面积。
一句话:可先求两个扇形面积的和减去正方形面積,因为阴影部分的面积恰好是两个扇形重叠的部分
▍ 声明:如有侵权,请及时与我们联系如有转载,请联系并注明原出处